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Abstract

The rise of foundation models has enabled generalizable solutions across diverse
computer vision tasks. However, their performance often declines in specialized
domains where data is limited, annotations are sparse, and subtle visual cues
dominate. This thesis targets such a scenario: detecting individual plants in
grassland fields where low inter-class variance, weak contrast, and small object
sizes pose persistent challenges.
Instead of discarding prior work like DETReg, which was criticized for its lack of
classification and reliance on generic object priors, this thesis revisits and extends
it. Building on the Deformable Detection Transformer (Deformable DETR), the
proposed method introduces an unsupervised, domain-aware pretraining pipeline
that directly addresses DETReg’s limitations. It uses custom pseudo boxes tai-
lored to the target domain and gradually incorporates teacher model predictions
via an Exponential Moving Average (EMA)-based training loop. Semantic learn-
ing is introduced early through a binary classification signal, and regularization
mechanisms are applied to stabilize training and avoid collapse.
While results show only marginal gains when abundant labeled data is avail-
able, the benefits become pronounced under few-shot conditions. The proposed
pretraining strategy consistently outperforms models initialized from unrelated
domains such as COCO. Moreover, it is designed to operate with minimal su-
pervision and for reducing not only labeled data requirements but also the need
for large volumes of unlabeled data by leveraging curriculum schedules and early
semantic cues. Lightweight adapter modules are optionally integrated to stabi-
lize the training in the early phase and to test additional possibilities for data
reduction, but are not decisive for the final performance.
This work presents a scalable and interpretable approach to domain-specific pre-
training, aimed at data efficiency and practical applicability in real-world, low-
resource scenarios. Applications include ecological monitoring, automated weed
control, and other tasks requiring fine-grained recognition in complex natural
environments.
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1 | Introduction
Object detection is a key task in Computer Vision (CV), with applications in
fields such as autonomous driving, medicine, and ecological monitoring. Recent
advances have introduced large-scale foundation models capable of generalizing
across tasks and domains through zero-shot or few-shot learning. While pow-
erful in broad settings, these models often underperform in specialized domains
that require sensitivity to subtle, domain-specific features. One such challenge is
plant detection in natural grassland environments, where small object sizes, low
contrast, and visual similarity between foreground and background complicate ac-
curate detection. In such cases, generic architectures and large-scale pretraining
are often insufficient, and task-specific adaptation becomes essential.
This work introduces a domain-specific pretraining strategy using Self-Supervised
Learning (SSL) and a pre-trained Deformable Detection Transformer (DDETR)
model [86]. Inspired by DETReg [3], the method uses pseudo-labels generated
from unlabeled data to guide object-level learning. Unlike DETReg, which omits
classification and relies on general-purpose region proposals, this approach in-
troduces a custom pseudo-labeling pipeline tailored to the domain and leverages
confidence-based classification in a single-class setting. To minimize computa-
tional cost while maintaining adaptability, lightweight adapter modules are inte-
grated into the model. These allow the backbone to remain frozen while enabling
task-specific specialization during pretraining.
The goal of this work is to demonstrate that a targeted, scalable approach can
deliver strong results in challenging, data-scarce environments without relying
on large general-purpose models that often fail in such cases. The findings con-
tribute to ongoing research in SSL, domain adaptation, and efficient training for
specialized object detection.

1.1 Motivation and Problem Statement
This research is conducted within the framework of the KI-gestützte hochautoma-
tisierte Unkrautbekämpfung im Grünland (KIhUG), which aims to develop an
AI-assisted robotic system for automated weed control in grasslands. One of the
primary objectives of the project is the detection and removal of Jacobaea vul-
garis, a toxic plant that poses risks to both livestock and humans when ingested
[22]. Farmers have a strong incentive to control its spread, as its presence in hay
poses both health risks and regulatory concerns.
The envisioned KIhUG system aims to identify and eliminate these plants using
non-chemical methods such as mechanical removal or electrocution. However,
a major bottleneck in achieving this goal is the requirement for large volumes
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1.1 Motivation and Problem Statement

The ’Kihug’ work pipeline. [63] The creation of the dataset.

Figure 1.2

of high-quality training data. While precision agriculture has made progress in
targeted interventions such as spot spraying, most current detection systems are
optimized for "green-on-brown" scenarios, where weeds are clearly distinguishable
against bare soil. In contrast, detecting J. vulgaris in dense, natural grasslands
presents a far more challenging "green-on-green" problem, due to overlapping
textures, similar color tones, and variations in lighting. [1]
A robust neural network for plant detection requires training on a diverse and ac-
curately annotated dataset to ensure high recall and precision. However, dataset
creation is both costly and time-intensive [4]. Labeling thousands of images
demands expert supervision, detailed manual work, and significant logistical co-
ordination. The variability in plant appearance across growth stages, weather
conditions, and occlusions further complicates annotation. Similar challenges are
common in other specialized domains where annotated data is scarce or expensive
to obtain. At the time of writing, the KIhUG project focuses on a single target
plant. For this species, a data set was compiled with considerable effort, which is
used in this work (see Figure 1.3). Should the scope expand to include additional
species, entirely new datasets would be needed, requiring further investment of
time, resources, and domain knowledge.
These constraints highlight the need for approaches that reduce dependency on
fully labeled datasets and minimize the burden of training from scratch, forming
the foundation for the research directions in the following chapters.
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1.2 Research Objectives and Contributions

1.2 Research Objectives and Contributions
The primary objective of this thesis is to explore whether a domain-specific foun-
dation model can be developed with minimal reliance on labeled data, while
still enabling effective fine-tuning for downstream tasks under similar constraints.
This addresses a common challenge in specialized domains: the lack of large-scale
annotated datasets and the absence of pre-trained models tailored to niche ap-
plications.
While the detection of Jacobaea vulgaris in the KIhUG project serves as the
central use case, the broader aim is to develop a generalizable methodology for
constructing lightweight, adaptable, domain-specific foundation models. Such
models should support related detection tasks with minimal additional data, po-
tentially enabling the training of models for similar weed species or agricultural
applications using only small, weakly labeled, or synthetic datasets.
This work is organized around two central research themes, each defined by two
guiding research questions. To address these questions, a set of corresponding
objectives has been formulated, encompassing the design of training strategies,
architectural modifications, and evaluation of model behavior under limited su-
pervision.

Figure 1.3: Six example image crops from the KIhUG dataset, showing labeled
instances of Jacobaea vulgaris marked with green bounding boxes.
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1.2 Research Objectives and Contributions

Research Theme 1: SSL Object Detection on Domain-Specific Data

RQ1: Can a SSL object detection model, trained solely on pseudo-labels ex-
tracted from unlabeled grassland images, learn to detect non-grass plant instances
without manual annotations?

RQ2: Does domain-specific SSL pretraining improve convergence speed or fi-
nal detection performance during downstream fine-tuning, compared to using
randomly initialized or generically pretrained weights (e.g., Common Objects in
Context (COCO) [41])?
Objectives:

• Design a pseudo-labeling pipeline for unlabeled grassland imagery to iden-
tify non-grass plant regions with sufficient quality for SSL training.

• Train an object detection model using only pseudo-labels and evaluate its
performance in the absence of manual annotations.

• Compare downstream fine-tuning behavior across three initialization set-
tings: domain-specific pretraining (proposed), generic pretraining (e.g.,
COCO), and random initialization.

Research Theme 2: Parameter-Efficient Fine-Tuning (PEFT)-Based Efficient
Learning in Object Detection

RQ3: Can adapter modules [31] integrated into an object detection architecture
reduce the number of trainable parameters during SSL training while preserving
detection quality?

RQ4: Do adapters pretrained during SSL learning improve sample efficiency or
convergence speed when reused in downstream fine-tuning on annotated target
datasets?
Objectives:

• Integrate adapter modules into the object detection architecture and de-
velop training routines that update only these modules and selected layers.

• Evaluate detection quality and training efficiency compared to full model
fine-tuning.

• Reuse the pretrained adapters during downstream fine-tuning and assess
improvements in convergence speed and data efficiency.

These research questions and objectives are addressed through the experimental
design and evaluation presented in Chapter 4.
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1.3 Thesis Outline

1.3 Thesis Outline
This thesis is structured into eight chapters, each contributing to a cohesive in-
vestigation of SSL and parameter-efficient learning techniques for domain-specific
object detection in agricultural environments.
Chapter 2 provides the theoretical foundation, presenting an overview of the evo-
lution and limitations of foundation models, with particular emphasis on their
application in specialized domains. It introduces key concepts such as SSL learn-
ing and adapter modules, establishing the groundwork for the proposed approach.
Chapter 3 surveys related work in object detection, domain adaptation, and
parameter-efficient learning. It critically examines existing methods and high-
lights their limitations in settings with scarce annotations and limited computa-
tional resources, thereby motivating the need for alternative solutions.
Chapter 4 outlines the proposed methodology. Following a formal problem defini-
tion, it details the strategy for leveraging pseudo-labels and integrating adapters
into a SSL training pipeline. It also justifies the selection of the base architecture
and its adaptation to the research goals.
Chapter 5 covers the practical implementation. It describes the architectural
modifications required to support adapter modules, the construction of the train-
ing pipeline, and the generation and application of pseudo-labels. Additionally,
it outlines the software stack and computational infrastructure used in the ex-
periments.
Chapter 6 presents the experimental evaluation. It compares the proposed ap-
proach against relevant baselines using metrics such as detection accuracy, con-
vergence speed, and parameter efficiency. The experiments are designed to isolate
and assess the contributions of each component, including pseudo-labeling and
adapter-based training.
Chapter 7 offers a critical discussion of the findings. It interprets the results in a
broader context, reflecting on strengths, limitations, and potential generalization
to other domains such as medical imaging or environmental monitoring.
Chapter 8 concludes the thesis by summarizing key contributions and insights. It
revisits the research questions, evaluates how they were addressed, and outlines
directions for future work, including extensions to multi-class detection and more
complex datasets.
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2 | Background and Context
Many fields of applied machine learning are highly specialized, often involving
data distributions, feature patterns, or operational constraints that differ substan-
tially from common benchmark settings. As a result, domain-specific strategies
for model adaptation have long been necessary in areas such as medical imaging,
remote sensing, and agricultural analysis.
In recent years, however, research and industry have shifted heavily toward
general-purpose foundation models. For example, VisionLLM [77] shows how
large language models can function as open-ended decoders for vision tasks such
as detection and segmentation using natural language prompts. These mod-
els aim to unify learning across tasks and modalities, often relying on massive
labeled datasets and compute-intensive training. The current trend favors ar-
chitectures that generalize broadly with minimal customization, often omitting
domain-specific considerations and replacing dataset curation with zero- or few-
shot inference.
While highly successful in general contexts, these models face challenges in spe-
cialized domains like precision agriculture or ecological monitoring. Here, limited
data availability, distinct visual patterns, and task-specific constraints hinder
performance. Recent research has attempted to bridge the gap between data ef-
ficiency and effectiveness. Few-shot methods such as Meta-DETR [84] and TFA
[71] adapt pretrained models to novel classes using limited annotations. Self-
supervised approaches like DETReg [3], by contrast, aim to eliminate ground-
truth labels altogether using object-level pseudo-labels.
Complementing these research directions, system-level tools are emerging that
emphasize low-data or training-free deployment. Models like the Segment Any-
thing Model (SAM) [36] offer prompt-based segmentation across diverse scenes,
while platforms like Roboflow [59] and OpenAIs Application Programming Inter-
faces (APIs) [52] provide modular building blocks for vision pipelines.
This chapter provides the theoretical and practical background for this thesis. It
reviews the evolution of foundation models, discusses the limitations of out-of-
the-box approaches in specialized domains, and introduces key techniques (such
as self-supervised learning and adapter-based fine-tuning) as scalable solutions
for data scarce vision tasks.
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2.1 Foundation Models: Trends and Challenges
Foundation models have gained substantial momentum in computer vision, with
a strong trend toward generality, scalability, and multi-modality. Vision-language
models such as VisionLLM [77], VL-SAM [43, 42], LLaFS [85], and GLEE [80]
demonstrate that Large Language Models (LLMs) can serve as powerful open-
ended decoders for a wide range of visual tasks, including object detection, seg-
mentation, and image captioning. These systems often rely on prompt-based
interfaces or APIs, allowing users to describe tasks in natural language, thus
bypassing the need for explicit domain-specific training. VL-SAM, for example,
integrates the prompt flexibility of LLMs with the segmentation capabilities of
the SAM to enable open-ended, training-free segmentation across domains.
Recent literature, such as the review "Vision-Language Model for Object Detec-
tion and Segmentation," [21] highlights the strengths of these models in closed-set
detection, domain adaptation, and few-shot learning scenarios. MarvelOVD [76],
for example, enhances region-level grounding in object detection by refining the
interaction between detectors and vision-language embeddings.
These developments collectively represent a paradigm shift: rather than devel-
oping specialized models for each task, many pipelines now combine pre-trained,
general-purpose modules (like SAM or LLMs) in zero-shot or few-shot settings.
Their ease of use through model hubs or API-accessible endpoints makes them
particularly attractive for real-world deployment and prototyping.
Despite their impressive capabilities, these models often struggle in specialized
domains that deviate from the distributions seen during pretraining. In grass-
land imagery, for instance, subtle differences between plant species, overlapping
vegetation, and low inter-class variance pose serious challenges. General-purpose
segmentation often lacks the spatial granularity and semantic sensitivity required
for precise, localized detection, especially when visual features are faint, occluded,
or visually similar to background textures.
This limitation is illustrated in Figure 2.1, which shows example predictions from
GPT-4o and OWL-ViT across four grassland image crops of increasing realism
and difficulty. The final column features a sample from the KIhUG dataset. The
models were prompted using either natural language (e.g., Locate all larger plant
centers) or tag-based queries (e.g., [plant, shrub]), with the task reduced to simply
identifying plant-like regions. Despite this simplification, OWL-ViT consistently
fails to produce meaningful results. GPT o3 performs somewhat better, especially
in less complex scenes, but still returns vague or imprecise locations that fall far
short of what is needed for reliable, high-precision plant detection. This example
underscores the inadequacy of generic foundation models for even basic spatial
localization in dense, visually ambiguous environments, reinforcing the need for
domain-specific alternatives.
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Figure 2.1: Example of plant predictions made by GPT o3 and OWL-ViT, orga-
nized by input image (rows) and evaluation model (columns). For GPT-4o, the
prompt was: Can you give me the relative coordinates of all larger plant centers
you detect in the given image? The images upper-left corner is (0,0) and the
bottom-right is (1,1). Can you try to guess without using classical approaches?
OWL-ViT, in contrast, was queried using a simple tag-based prompt: ["plant",
"shrub"].
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2.2 Domain-Specific Model Requirements
While general-purpose foundation models perform impressively on diverse tasks,
their effectiveness often drops in specialized domains. Settings that are char-
acterized by rare object classes, subtle visual cues, or complex environmental
conditions are typically underrepresented in large-scale pretraining datasets. As
a result, applying off-the-shelf models to such domains often leads to suboptimal
results.
Several studies highlight this issue. Li et al. [40] found that the SAM failed to gen-
eralize to permafrost mapping, revealing poor adaptability to out-of-distribution
(OOD) environments. Likewise, Xu et al. [82] show that even adapted foun-
dation models often underperform compared to simple supervised baselines on
domain-specific tasks.
Chen et al. [12] further argue that effective domain adaptation requires architec-
tural adjustments (e.g., adapters), specialized objectives (e.g., SSL), and efficient
annotation strategies (e.g., pseudo-labeling). They emphasize modularity and
parameter efficiency as key enablers for success in low-data domains.
In agricultural contexts like weed detection in dense grasslands, these demands
are even more pronounced. Visual distinctions are subtle, occlusion is common,
and annotated data is scarce. To better understand the trade-offs, it is helpful
to contrast general-purpose and domain-specific models:

General-Purpose Models
• Trained on large, diverse web-

scale datasets
• Effective across many tasks out-

of-the-box
• Often lack precision in unfamiliar

domains
• Zero-/few-shot capability reduces

annotation needs
• Typically large; support PEFT,

but require more data for effective
adaptation

Domain-Specific Models
• Trained on narrow, task-specific

data
• Require fine-tuning but adapt

precisely
• Capture subtle, context-sensitive

features
• Can use pseudo-labels to reduce

annotation effort
• Support PEFT for efficient train-

ing

This comparison underscores that while generalist models prioritize breadth and
convenience, domain-specific approaches are better suited for precision-critical
tasks, especially when enhanced by SSL and PEFT. These considerations shape
the methodological foundation of this thesis.
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2.3 Importance of Plant Detection in Grassland
Environments

Plant detection has become a key application area for machine learning in agri-
culture, with deep learning techniques increasingly adopted for tasks such as crop
monitoring, yield estimation, and weed control [35]. However, most successes in
this domain are found in highly structured settings (such as row crops) where
plants are spatially arranged and their phenotypes are well-documented. In con-
trast, grassland environments present a more complex, unstructured challenge
that remains underexplored in current research.
Grasslands contain a high diversity of plant species with overlapping morphologies
and similar color profiles, often growing in dense, non-uniform patterns. As such,
the visual signals needed to distinguish between harmful and harmless plants are
often subtle and inconsistent. For example, species such as Jacobaea vulgaris
may closely resemble other non-toxic flora like Ajuga reptans, particularly during
early growth stages. This visual ambiguity complicates detection, even for human
experts, and becomes a major bottleneck for automated approaches. A visual
example of such visual similarity is shown in Figure 2.2.
Adding to the challenge is the fact that chemical control methods are either
discouraged or outright banned in many ecologically sensitive grasslands. As a
result, plant identification and removal are often performed manually − a task
that is time-consuming, labor-intensive, and prone to error. Studies such as [24]
emphasize the importance of precise within-field plant mapping as a basis for
effective intervention strategies. However, this process often relies on aerial or
proximal sensing data that must be interpreted with care, especially in vegetation-
dense environments.
In this context, the role of machine learning is not just to replicate human identifi-
cation, but to do so reliably across variable lighting, growth stages, and occlusions.
Yet current segmentation and detection models often underperform when trans-
ferred from curated datasets to these unpredictable natural scenes. The work by
van Marrewijk et al. [72] underlines how costly annotation and domain variation
hinder the scalability of deep learning in practical agricultural tasks, advocating
for efficient solutions such as active learning and domain-specific adaptation.
Together, these insights frame the relevance of this thesis: developing detection
models that can perform under the nuanced demands of grassland environments
without requiring extensive manual annotation. Accurate identification of harm-
ful species like J. vulgaris is not only agriculturally beneficial but also critical for
ecological management and regulatory compliance.
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Figure 2.2: Top: High-resolution field image showing morphologically similar
plant species − early-stage Ajuga reptans (left) and Jacobaea vulgaris
(right) − growing side by side in a natural grassland environment.
The image offers well-lit, detailed visual cues for species discrimina-
tion (Fig. 3.7 [73]).
Bottom Left: Leaf shape variations of J. vulgaris across different
growth stages. As the plant matures, its leaves become more deeply
lobed and feather-like, complicating species identification under field
conditions. (Image credit: Pierre Aeby, Landwirtschaftliches Institut
Grangeneuve.)
Bottom Right: Dataset example depicting the same species as above
− A. reptans (red) and J. vulgaris (green) in early grow stages − un-
der challenging real-world conditions: low lighting, low resolution,
partial occlusion, and early growth stages. Accurate discrimination is
particularly difficult due to the poor visual quality and subtle mor-
phological differences.
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2.4 Adapters and Self-Supervised Learning:
Concepts and Benefits

Two complementary strategies, PEFT (Parameter-Efficient Fine-Tuning) and
SSL (Self-Supervised Learning), have emerged as promising solutions for adapting
vision models to specialized domains where annotated data is scarce and compu-
tational resources are constrained. These methods form the conceptual basis of
the approach proposed in this thesis.

Adapter-Based Fine-Tuning
Adapters are lightweight, trainable modules inserted into pre-trained neural net-
works to enable task-specific adaptation without modifying the full model. Orig-
inally introduced by Houlsby et al. [31], adapters have gained traction for their
ability to preserve the general knowledge encoded in a model backbone while
significantly reducing the number of parameters that require training. Instead of
updating all weights during fine-tuning, only the adapter layers are optimized,
making the approach more efficient in terms of both memory and compute.
This modular design supports flexible task-switching and multi-domain training
setups, while also mitigating the risk of catastrophic forgetting. Several exten-
sions have been proposed to further improve efficiency and expressiveness, includ-
ing LoRA [32], which uses low-rank matrix decomposition, and Compacter [47],
which employs shared hypercomplex adapters. In the context of computer vision,
approaches like AdaptFormer [11] demonstrate the viability of adapter-based fine-
tuning for vision transformers, though adoption in niche domains such as agri-
culture or remote sensing is still emerging.

Self-Supervised Learning
SSL provides a framework for learning meaningful representations from unlabeled
data by defining pretext tasks that do not require manual annotations. These
tasks exploit structural or semantic regularities in the data. For example, con-
trastive learning [10], where models are trained to distinguish between augmented
views of the same image, or masked image modeling [27], where models learn to
reconstruct missing image patches.
Such strategies promote the acquisition of features that generalize across tasks,
such as object boundaries, textures, and spatial configurations which are char-
acteristics particularly important for downstream tasks like object detection. In
the case of object detection, methods like DETReg [3] show how self-supervised
pretraining can develop objectness priors using pseudo-labels, even in the absence
of manually annotated boxes.
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Combining Adapters and SSL
While both adapter-based fine-tuning and SSL have been successfully applied
in isolation, their combined use remains largely underexplored, particularly in
domains with limited labeled and unlabeled data. The idea of applying self-
supervised training to adapter modules, rather than to the full network, raises
a number of open questions: Can adapters alone capture useful representations
during pretraining? Can this setup offer a meaningful balance between efficiency
and accuracy? And to what extent does it transfer to downstream tasks?
The experimental approach presented in this thesis investigates this possibility.
Specifically, adapters are inserted into a DDETR architecture and trained using
self-supervised object-level signals extracted from unlabeled domain data. These
same adapters are then fine-tuned for detection on pseudo-labeled data. While
this setup is unconventional and its theoretical foundations are not yet well-
established in the literature, it offers a low-cost, modular pipeline for testing
domain adaptation under realistic data constraints.
Rather than claiming state-of-the-art results, the aim is to evaluate whether this
combined strategy can yield competitive performance relative to full-model train-
ing, especially in scenarios where resource or annotation budgets are tight. If
adapters trained via SSL show even partial transferability, they may serve as a
promising direction for building scalable, domain-specific models with minimal
supervision.
The next chapter reviews related work in these areas and situates this investiga-
tion within the broader landscape of vision adaptation strategies.
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3 | Related Work
This chapter reviews research relevant to the development of domain-specific foun-
dation models, focusing on architectural design, data-efficient training strategies,
and cross-domain adaptation. It covers key advances in object detection SSL
frameworks, pseudo-labeling methods, and adapter-based fine-tuning. Emphasis
is placed on approaches that reduce annotation needs and computational costs
while preserving performance in specialized domains. By analyzing the strengths
and limitations of current methods, this chapter motivates the combination of
parameter-efficient adaptation and SSL explored in the following chapters.

3.1 Object Detection and DETR Variants
Object detection has long been a central task in computer vision, with foun-
dational deep learning models such as Faster R-CNN [57] and You Only Look
Once (YOLO) [56] achieving widespread success. YOLO set a benchmark for
real-time detection, while Faster R-CNN introduced a two-stage pipeline prioritiz-
ing accuracy. Both architectures have since evolved through numerous follow-up
versions (such as YOLOv12 [69]) while remaining competitive alongside newer de-
signs. A major architectural shift came with Detection Transformer (DETR) [9],
which redefined object detection as a direct set prediction problem. It eliminates
components like anchor boxes and Non-Maximum Suppression (NMS) by employ-
ing a transformer-based encoder-decoder architecture and bipartite matching for
loss computation. While DETR’s end-to-end design is conceptually elegant and
simplifies the detection pipeline, it suffers from high computational demands and
slow convergence, especially on smaller datasets.
While DETR represents a breakthrough in architectural clarity, its practical adop-
tion is hindered by slow training convergence and limited scalability to small or
sparse datasets. Consequently, several improved variants have been proposed:

• Conditional DETR [48] accelerates training by refining how object queries
attend to encoder outputs, introducing conditional spatial query embed-
dings.

• DN-DETR [39] proposes a denoising strategy during training by inject-
ing known object information into queries, which improves robustness and
accelerates convergence.

• DDETR [86] introduces multi-scale deformable attention mechanisms that
focus on sparse keypoints rather than full feature maps, significantly re-
ducing the computational cost and enabling application to high-resolution
images.
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Figure 3.1: Overview of the DETR architecture. The image features a
Convolutional Neural Network (CNN) backbone (typically a ResNet)
that produces spatial feature maps, followed by a transformer
encoder-decoder. A fixed set of learned object queries is passed
through the decoder, which predicts object class labels and bounding
box coordinates. Bipartite matching with the Hungarian algorithm
enables end-to-end set prediction.

(Fig. 2 from [9])

These variants collectively address core limitations of the original DETR for-
mulation. In particular, DDETR serves as the architectural basis for the work
presented in this thesis, due to its efficient handling of dense and high-resolution
imagery common in aerial and agricultural contexts. Overall, DETR and its
extensions demonstrate how transformer-based architectures can be tailored for
detection while maintaining the benefits of global context modeling. The follow-
ing sections examine how such architectures can be adapted further through SSL
and parameter-efficient fine-tuning techniques.

3.2 SSL for Detection
SSL has emerged as a powerful paradigm for learning visual representations with-
out manual annotations. Instead of relying on labeled datasets, SSL methods
define pretext tasks that exploit inherent structure in the data. These tasks en-
courage models to learn meaningful features that transfer well to downstream
applications such as classification or object detection.
A wide range of SSL techniques has been proposed for image-level representation
learning. Contrastive methods like SimCLR [14], MoCo [28], and BYOL [25] train
networks to maximize agreement between different augmentations of the same
image. Notably, Bootstrap Your Own Latent (BYOL) stabilizes training through
the use of a momentum encoder updated via an Exponential Moving Average of
Weights (EMA) of the student weights, a mechanism that has since influenced
a broad set of teacher-student strategies in SSL pipelines. In parallel, masked
image modeling approaches like Masked Autoencoders (MAEs) [27] reconstruct
missing image regions from visible patches, enforcing semantic understanding of
spatial context. Other vision transformer-based methods like DINO [10] rely on
patch-level matching and self-distillation to extract transferable features.
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Extending SSL to object detection introduces additional complexity due to the
need for spatial localization alongside semantic classification. Detection-oriented
approaches such as UP-DETR [17] and DETReg [3] address this by coupling
vision transformers with auxiliary pretext tasks or spatial priors. UP-DETR
incorporates location-based objectives, whereas DETReg leverages unsupervised
region proposals to define object-centric training targets in the absence of ground
truth.
However, DETR-style SSL remains an area of active research. Recent findings by
Ma et al. [46] questioned the robustness of DETRegs pretraining, suggesting that
simpler strategies may offer more consistent performance across benchmarks.
Despite these uncertainties, the use of SSL for object detection remains attractive,
particularly in domains where labeled data is scarce. Region-aware pretraining
enables detection transformers to acquire objectness priors from raw inputs, re-
ducing dependence on annotation-heavy pipelines.
Moreover, recent trends in student-teacher training frameworks often rely on
EMA-based weight averaging to stabilize learning. Beyond BYOL, newer works
leverage this principle by maintaining a teacher model as an exponential mov-
ing average of the student. This teacher supervises training via pseudo-labels
such as bounding boxes or segmentation masks, enabling self-supervision even in
structured prediction tasks. Studies such as Morales-Brotons et al. [49] demon-
strate that EMA-based models yield better convergence stability and robustness,
making them a valuable component of modern SSL pipelines.

SimCLR
(Fig. 2 from [14])

MAE
(Fig. 1 from [27])

Figure 3.2: Comparison of two widely used SSL paradigms. Left: SimCLR [14]
uses contrastive learning by generating two augmented views of the
same image and training an encoder-projection head pipeline to
maximize agreement between the resulting representations. Right:
MAE [27] adopts a reconstruction-based approach by masking a large
portion of image patches, encoding only the visible ones, and recon-
structing the full image using a lightweight decoder. After training,
the decoder (only MAE) and projection head (both) are discarded,
and the encoder is reused for downstream tasks.
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3.3 Pseudo-Labeling Approaches
The previous section highlighted the importance of SSL for learning visual repre-
sentations without manual supervision. Among the most widely adopted strate-
gies in this context is pseudo-labeling, which involves generating approximate
ground-truth annotations from unlabeled data. These pseudo labels can take
various forms, including class labels, bounding boxes, or segmentation masks,
depending on the target task.
In object detection, pseudolabeling is often integrated into SSL pipelines to en-
courage the learning of objectness priors. DETReg [3], for instance, uses region
proposals from a regionproposal generator to pretrain DETR-based architectures.
Similarly, UP-DETR [17] employs synthetic targets through auxiliary tasks, such
as patchbased localization, to bootstrap transformerbased detection models.
More classical region proposal techniques such as Selective Search [70] and Edge-
Boxes [87] have historically been used for generating object hypotheses without
supervision, and can also serve as sources of pseudo labels. These methods ex-
ploit visual cues such as edges, textures, and color similarity to generate candidate
bounding boxes, which can be used for weak supervision or dataset bootstrapping.

selective search
(Adapted from Fig. 2 in [70])

edge box
(Fig. 1 [87])

Figure 3.4: Results and intermediate steps in the Selective Search and Edge Boxes
pipelines, taken from the original sources.
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Pseudo-labeling also plays a significant role in semantic segmentation. The
SAM [36] has popularized prompt-based segmentation, allowing users to extract
object masks from minimal input. While SAM enables pseudo-mask generation
at scale, its performance deteriorates in highly specialized domains. For example,
Li et al. [40] show that SAM fails to generalize to remote sensing imagery used in
permafrost mapping, illustrating the limitations of foundation models when ap-
plied to niche datasets. This aligns with the broader critique raised in Chapter 2
regarding the overgeneralization of universal models in domain-specific tasks.
Beyond computer vision, pseudo-labeling is widely used in other areas of Machine
Learning (ML), including natural language processing, speech recognition, and
information retrieval. In these domains, it serves as a critical strategy for boot-
strapping models from limited supervision, often in conjunction with confidence-
based sampling or data augmentation. For example, selective search techniques
adapted for text retrieval (such as MICO [78]) combine unsupervised clustering
with mutual information co-training, demonstrating that pseudo-labeling and
representation learning can be effectively co-optimized even in non-visual set-
tings. In semi-supervised learning more broadly, methods like FixMatch [65]
unify consistency regularization with confidence-based pseudo-label selection to
achieve strong performance with minimal labeled data. Similarly, research on
confirmation bias in pseudo-labeling [2] highlights both the potential and pitfalls
of this technique, prompting refinements that make it more robust across diverse
tasks. These approaches collectively emphasize the versatility and transferability
of pseudo-labeling across modalities and problem domains.
Ultimately, there is no single pseudo-labeling method or hyperparameter configu-
ration that universally outperforms others. As domains become more specialized,
pseudo-labeling strategies must also be tailored to the data structure, noise, and
semantic content. This adaptability makes pseudo-labeling not only a practical
solution for resource-limited scenarios but also a crucial component of modern
data-efficient learning systems.
As shown in Figure 3.4, both Selective Search and Edge Boxes highlight the sen-
sitivity of proposal quality to hyperparameter choices. The left image illustrates
how varying segmentation granularity in Selective Search can reveal different sub-
sets of relevant objects, none of which fully capture all ground truth instances.
Although combining multiple hyperparameter settings can improve recall, it also
introduces redundancy and noise. This fundamental trade-off persists even in
carefully tuned pipelines, emphasizing the need for domain-aware heuristics and
adaptive thresholds in specialized applications. Moreover, the design choices
made in algorithms like Edge Boxes (such as contour density thresholds and
edge orientation heuristics) reflect handcrafted compromises that rarely gener-
alize across datasets. As such, pseudo-labeling remains an inherently imperfect
process, best guided by task-specific insight rather than universal recipes.
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3.4 Adapter-Based Fine-Tuning and PEFT
As vision models grow in size and complexity, fully fine-tuning them for each
new task or domain becomes increasingly inefficient. PEFT (Parameter-Efficient
Fine-Tuning) addresses this challenge by modifying only a small subset of model
parameters, enabling resource-efficient adaptation with minimal performance loss
and significantly reduced memory footprint.
A foundational approach to PEFT is the use of adapters, introduced by Houlsby
et al. [31]. These lightweight bottleneck modules are inserted between transformer
layers and trained while the main model remains frozen. Formally, an adapter
layer is typically defined as:

Adapter(h) = h+Wup σ(Wdown h), (3.1)

where h is the hidden representation, Wdown ∈ Rd×r and Wup ∈ Rr×d are the
down- and up-projection matrices, r � d, and σ is a non-linear activation func-
tion.
Several refinements of this idea have been proposed. LoRA (Low-Rank Adapta-
tion) [32] introduces low-rank decompositions directly into the attention and feed-
forward components of transformers, injecting trainable matrices without altering
the original weights. This preserves compatibility with pre-trained checkpoints
and accelerates training. Compacter [47] further compresses adapters using
hypercomplex multiplication and shared parameter matrices, achieving strong
performance in NLP tasks at an even smaller parameter cost.
Although originally developed for natural language processing, PEFT techniques
are increasingly applied to vision tasks. Visual Prompt Tuning [33] adapts
prompt-based learning by optimizing visual tokens that condition pre-trained vi-
sion models. Similarly, AdaptFormer [13] and Vision Transformer Adapters
for Dense Prediction [16] extend adapter-based techniques to tasks like classifi-
cation, segmentation, and object detection, demonstrating their efficacy in visual
domains.
Recent surveys such as [81] offer a comprehensive overview of PEFT strategies for
pre-trained vision models, highlighting trends, design patterns, and challenges.
These findings underscore the versatility of adapters and related techniques as
practical alternatives to full fine-tuning, particularly in low-resource or domain-
adaptation settings.
Despite these advances, the integration of adapter-based tuning with SSL and
object detection remains relatively underexplored. Most prior work focuses on
supervised learning or simpler classification benchmarks. This thesis investi-
gates the synergy between adapter-based tuning and self-supervised object de-
tection, aiming to enable scalable and efficient adaptation of pre-trained models
in domain-specific settings with limited supervision.
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3.5 Domain Adaptation in Vision Models
Domain adaptation aims to transfer knowledge from a labeled source domain
to an unlabeled or sparsely labeled target domain, addressing the performance
degradation caused by domain shift. This is particularly important for real-world
computer vision applications, where training and deployment environments often
differ significantly in terms of appearance, texture, lighting, or sensor character-
istics.
A foundational work in unsupervised domain adaptation is the Domain-Adversarial
Neural Network (DANN) [23], which introduced a gradient reversal layer to align
feature distributions across domains through adversarial training. By minimizing
the task loss while simultaneously maximizing the domain confusion, DANN en-
courages the extraction of domain-invariant features. Building on this, Discrimi-
native Adversarial Domain Adaptation (DADA) [67] refines adversarial alignment
by ensuring that discriminative class boundaries are preserved in the target do-
main, thereby improving classification performance.
Alternative strategies include discrepancy-based methods, such as Maximum Clas-
sifier Discrepancy (MCD) [62]. Rather than aligning feature distributions directly,
MCD trains multiple classifiers and encourages them to produce consistent out-
puts on the target domain. When disagreement arises, it indicates a domain gap,
prompting the feature extractor to adjust its representation.
In the context of object detection, domain adaptation introduces further chal-
lenges, as spatial and structural consistency must also be preserved. Chen et
al. [15] extended the Faster R-CNN framework by incorporating image-level and
instance-level domain classifiers, enabling adaptation both globally and locally.
Similarly, the Strong-Weak Distribution Alignment method [61] distinguishes be-
tween strong alignment at the image level and weak alignment at the instance
level, resulting in better cross-domain generalization for object detectors.
These approaches demonstrate the growing diversity of domain adaptation tech-
niques in computer vision, reaching from adversarial learning and discrepancy
minimization to specialized detector modifications. Despite significant progress,
domain adaptation for dense prediction tasks, particularly under resource and
annotation constraints, remains an open challenge.
This thesis addresses domain adaptation from a different angle: rather than
aligning feature distributions explicitly, it explores the use of parameter-efficient
pretraining, pseudo-labeling, and SSL to adapt detection transformers to novel
domains with minimal supervision.
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4 | Methodology
This chapter outlines the methodological foundations and experimental design
that underpin the development of a domain-specific object detection model for
plant identification in grassland environments. The focus lies on the rationale
behind key design decisions, particularly in relation to dataset selection, training
strategies, and model architecture. Rather than detailing the technical imple-
mentation, which is covered in the subsequent chapter, this section emphasizes
the conceptual reasoning that guided the overall approach. The chapter is di-
vided into two main sections. The first section introduces the data sources used
throughout this work, including internal, public, and synthetic datasets. These
are discussed with respect to their relevance for both self-supervised pretraining
and downstream finetuning. Particular attention is given to the challenges in-
herent in collecting representative visual data in outdoor environments and the
strategies adopted to mitigate them. The second section focuses on the method-
ological aspects of model training, including the choice of architecture, the incor-
poration of adapter modules, and the use of self-supervised objectives to reduce
dependence on manual annotation. The design of the pseudo-labeling pipeline
and the application of regularization techniques to improve training stability are
also discussed.

4.1 Data Sources and Preparation
Data availability is a central factor in developing effective machine learning mod-
els, particularly in specialized domains where annotated datasets are scarce or
difficult to obtain. In this work, the goal is to train a domain-specific model us-
ing SSL, which removes the need for manual labels during the pretraining phase.
However, this does not eliminate the importance of data quality: the visual data
must still contain relevant domain features to support meaningful representation
learning. The target domain in this thesis, the detection of plants in grassland
environments, introduces unique challenges. Plants often blend with the back-
ground due to similar textures and colors, and their appearances vary widely
depending on species, growth stage, and environmental conditions. Collecting a
sufficiently diverse and representative dataset is non-trivial and often constrained
by logistical and seasonal factors. This situation is not unique. Other domains,
such as medical imaging or industrial inspection, may suffer from even stricter
limitations due to data sensitivity, privacy concerns, or the high cost of acquisi-
tion. As such, choosing appropriate datasets is a critical step. In this thesis, a
combination of real, synthetic, and publicly available image data is used to max-
imize diversity while minimizing manual effort. The following sections describe
each of these sources and their specific roles in training and evaluation.
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4.1.1 Internal Dataset (KIhUG)
The internal dataset used in this thesis was collected within the KIhUG project
using a Basler Ace Pro 2 camera mounted approximately 60 cm above the ground.
The dataset comprises a total of 4,250 high-resolution images with a resolution
of 1920×1200 pixels, captured at 10-30 frames per second. Data acquisition was
performed using two different setups: one involving a tractor-mounted camera and
the other a manually guided handcart. Ground truth annotations were provided
for 6,302 object instances and stored in YOLO format. Each annotation file
contains one or more lines, with each line representing a single bounding box
using center-normalized coordinates. These label files are organized in a parallel
directory structure under labels/, with file names matching their corresponding
images.
To prevent data leakage and ensure a clean separation between training and eval-
uation, a structured Yet Another Markup Language (YAML) file was created. It
explicitly defines the dataset splits, listing image paths grouped into train, val,
and test sections. The split was designed to separate entire image sequences
and to prevent multiple views of the same plant from appearing across different
subsets. Background-only images (without labeled instances) were excluded to
avoid skewing the evaluation and learning process. Based on this primary split,
additional YAML files were generated to define various sub-datasets used in later
experiments. Figure 4.1 provides an overview of the image and object counts
across these dataset variants. This split configuration forms the basis for all sub-
sequent experiments and ensures reproducible and controlled comparisons across
training regimes. The labeling format and annotation protocol were inspired by
practices used in the Rumex Weeds dataset, described in the following section.
During training, this dataset can be easily processed through a data loader
pipeline that applies scaling, normalization, and optional data augmentation
strategies such as horizontal flipping or color jitter.

Figure 4.1: Distribution of images and labeled object instances across dataset
splits defined in the different KIhUG YAML configurations.
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4.1.2 Public Dataset (Rumex Weeds)
The Rumex Weeds dataset [26] is a publicly available resource created for pre-
cision agriculture and robotic weed detection. It targets the two species Rumex
obtusifolius and Rumex crispus under challenging green-on-green conditions in
natural grasslands. The dataset includes 5,510 RGB images captured from a
top-down perspective across three different farms on four days during summer
and autumn 2021. Altogether, it contains 15,519 manually annotated bounding
boxes and 340 pixel-wise segmentation masks, making it one of the first publicly
available datasets specifically designed for grassland weed detection.
In this thesis, the Rumex Weeds dataset is used as a second benchmark on
the same domain to assess the generalization capability of the proposed self-
supervised pretraining and adapter-based fine-tuning pipeline. By evaluating
performance on this related yet distinct dataset, it is demonstrated that domain-
specific pretraining confers transfer benefits even when the target dataset differs
in species composition, image acquisition protocol, sensor or other characteristics.
The original dataset split as defined in the publication was preserved without
modification to ensure comparability with existing benchmarks. In addition to
using the full dataset, multiple smaller subsets were created based on fixed per-
centages of the original training set (e.g., 10%, 25%, 50%). These were con-
structed to reflect the same split ratios and structure as applied to the internal
KIhUG dataset, allowing a consistent evaluation of the proposed methods per-
formance in reduced-data scenarios.
Figure 4.2 provides an overview of the distribution of images and labeled objects
in the original dataset splits.

Figure 4.2: Distribution of images and labeled object instances as defined in the
original Rumex Weeds dataset configuration, compared with sub-
dataset splits created for this thesis.
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4.1.3 Synthetic and Unlabeled Datasets
Unlabeled data form the cornerstone of the SSL strategy developed in this the-
sis. They enable representation learning without requiring manual annotation,
thereby addressing one of the core challenges in domain-specific model develop-
ment. To construct a sufficiently diverse and scalable pretraining corpus, several
unlabeled image sources were selected based on visual similarity to the target
domain and overall dataset size. The following paragraphs describe each of these
sources in detail.

GrassClover The GrassClover dataset [64] comprises 31,600 real-world RGB
images of grass-clover mixtures captured outdoors. These images feature variable
lighting conditions, occlusions, and a mixture of plant species, including common
weeds, with ground-sampling distances ranging from 4-8 px/mm. Additionally,
the dataset includes 8,000 synthetic images with hierarchical and instance-level
annotations; however, only the real, unlabeled images were used in this work.
Due to its scale and domain relevance, GrassClover served as the primary source
of unlabeled training data.

Internal drone/field shots This collection includes real-world images cap-
tured during an internal KIhUG project experiment, using a drone-mounted cam-
era. The original goal was to evaluate whether drone imagery could serve as a
practical basis for plant-level datasets. However, due to insufficient resolution
at feasible flight altitudes, the resulting images did not allow accurate identifica-
tion of individual plant species. Despite their limitations, these images remain
visually consistent with the target domain and were therefore used as unlabeled
inputs during self-supervised pretraining. Since they do not introduce label bias,
they serve as a low-risk source of domain-relevant visual features. These images
have not been published and are only used within this research context.

Synthetic renderings A set of synthetic grassland images was generated us-
ing 3D modeling environments as part of a Bachelor’s thesis within the KIhUG
project [37]. These renderings aimed to simulate diverse environmental conditions
and vegetation structures under controlled variability. Despite featuring the tar-
get plant class, the visual quality and realism of the synthetic images were limited
due to modeling constraints, particularly with regard to capturing intra-species
diversity and growth-stage variations. The thesis results suggest that these syn-
thetic samples introduced no significant bias when used in training of a model,
due to what is commonly referred to as the "reality gap." Consequently, the im-
ages are useful for self supervised pretraining and are not used for fine-tuning or
evaluation.
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Potato tuber microscopy dataset To assess the transferability of self- su-
pervised representations beyond the target domain, an unrelated dataset was
included: microscopy images of potato tuber cross-sections [6], comprising 9,811
unstained and 6,127 stained RGB images. Although these were not used for fine-
tuning, they serve as a cross-domain benchmark to evaluate the generality of the
learned feature space.
To investigate the impact of data volume on self-supervised training, two nested
subsets were derived from the combined SSL dataset. First, a 50% subset was
randomly sampled using a custom YAML configuration script. This reduced
dataset was then used as the input for a second subsampling step, producing
a 25% subset of the full corpus. These subsets were employed in experiments
assessing the trade-offs between dataset size, representation quality, and adapter-
based parameter efficiency. An overview of the subset sizes and their composition
is provided in Figure 4.3.

Figure 4.3: Combined and subset sizes of the unlabled datasets for SSL Training.

Mirko Lehn 27



4.1 Data Sources and Preparation

KIhUG (annotated)

Rumex Weeds (annotated)

Synthetic Renderings

Drone Shots

GrassClover (synthetic)

GrassClover (real)

Potato Tubers

Figure 4.4: Visual samples from all datasets used in this thesis. Dataset names are
embedded as labels inside each image. All images are representative
crops, not shown to scale.
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4.2 Training and Model Design
This section outlines the core methodology behind the proposed self-supervised
object detection pipeline, including the architectural design, training strategy,
and evaluation plan. The goal is to develop a model capable of learning robust
and transferable visual representations from unlabeled domain-specific data, while
minimizing reliance on manual annotations and maintaining parameter efficiency.
To this end, the pipeline combines pseudo-labeling with teacher–student training
and curriculum learning, targeting challenging detection scenarios in heteroge-
neous grassland environments. Parameter-Efficient Fine-Tuning (PEFT) is em-
ployed using adapter modules to enable scalable transfer learning within both
pretraining and fine-tuning stages.
A deformable transformer-based detector is selected as the base model for its
capacity to handle geometric variation and dense scenes. The pseudo-labeling
pipeline supports self-supervised training through bounding box proposals, while
adapter integration provides a lightweight mechanism for injecting domain knowl-
edge without updating the full model.
Training stability is further enhanced by incorporating a mean teacher model
and regularization mechanisms to mitigate representation collapse. Metrics are
defined both for evaluating downstream performance and for monitoring the
progress of unsupervised representation learning. This section focuses on the
conceptual and methodological design, while technical and implementation de-
tails such as hyperparameters and code structure are deferred to Chapter 5.

4.2.1 Problem Definition
The challenges of detecting individual plants in grassland environments have al-
ready been outlined in Chapters 1 and 2 (see also Figure 2.2). These challenges
include minimal color contrast, overlapping plant structures, and high intra-class
variability across growth stages. Such conditions complicate object detection even
for human annotators and can render conventional deep learning models trained
on structured datasets like COCO largely ineffective in this domain.
This section briefly revisits the problem to emphasize its implications for model
design. Specifically, it motivates the need for a SSL pipeline that can lever-
age unlabeled data, avoid overfitting to scarce annotations, and generalize across
species, camera setups, and growth stages. Moreover, the domain-specific visual
ambiguities inherent in grassland imagery call for inductive biases that support
fine-grained shape and texture cues that are ideally learned from the target do-
main itself rather than transferred from unrelated datasets.
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4.2.2 Pseudo-Label Generation for Self-Supervised Training
Training object detection models directly on their target task has been shown to
yield superior results compared to contrastive or masked pretraining approaches.
DETReg [3], for example, demonstrates that pretraining with task-specific ob-
jectives (by predicting pseudo bounding boxes instead of global image features)
can improve downstream performance. Their method relies on Selective Search
to generate region proposals from unlabeled images.
However, subsequent analysis has highlighted critical shortcomings in this ap-
proach. In particular, Ma et al. [46] revisit DETReg and report that Selective
Search proposals are noisy, low-quality, and ill-suited for detection pretraining.
They argue that domain-agnostic region proposals may actively hinder represen-
tation learning, especially in complex real-world scenes. A recent survey by Kage
et al. [34] confirms that pseudo-label generation, though widely used in computer
vision, must be adapted to the domain and task to be effective.
These findings motivate a domain-specific pseudo-labeling pipeline for this thesis,
targeting green-on-green plant structures in grassland imagery. The implemented
method is intentionally simple and computationally efficient, combining classical
vision techniques to produce coarse object masks suitable for online training. A
more dynamic and classification-aware pseudo-labeling approach exists [75], but
was deemed unnecessarily complex for the unlabeled settings addressed here.
The proposed pipeline involves the following steps:

• Green-Red Vegetation Index (GRVI): enhances vegetation-specific
color signals [50]. GRVI is computed as:

GRVI = G−R

G+R

where G and R are green and red channel intensities, respectively. As
shown by Motohka [50], values above zero typically indicate plant matter,
distinguishing it from background elements like soil or litter.

• Total Variation (TV) Denoising: reduces texture noise while preserving
meaningful edges [60].

• Otsu Thresholding: binarizes the GRVI map using an adaptive thresh-
old [53].

• Watershed Segmentation: separates overlapping plant regions into dis-
crete segments [74].

• Bounding Box Filtering: removes candidates that are too small, irregu-
lar, or elongated.

The resulting pseudo labels, while imperfect, are visually coherent and tailored
to the domain. They serve as training targets during the self-supervised pretrain-
ing phase described in Section 4.2.5, and their visual outputs are illustrated in
Chapter 5, Section 5.4.1.
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4.2.3 Model Selection: Deformable DETR as the Base Model
DDETR [86] was selected as the base architecture for object detection due to its
proven strengths in detecting small, fine-grained objects and its computational
efficiency when working with high-resolution images. The model builds upon the
original DETR framework but replaces its costly global attention mechanism with
a more focused and efficient strategy: deformable attention.
Instead of computing attention across the full spatial extent of the image, as done
in standard transformers [18], deformable attention dynamically samples a small
set of key points around each query location. These offsets are learned during
training, allowing the model to concentrate on semantically relevant regions while
avoiding the overhead of dense attention. This localized, multi-scale focus allows
DDETR to detect small, partially occluded, or visually subtle targets such as in-
dividual plants in cluttered grassland scenes, while maintaining efficient training
and inference behavior.

Figure 4.5: Overview of the default DDETR architecture with reduced encoder
and decoder depth. The red × symbols indicate the parts of the
original architecture that were omitted in this thesis (Four of the six
standard encoder and decoder layers). This reduction was made to
decrease model complexity, mitigate overfitting, and ensure compat-
ibility with lightweight deployment environments such as embedded
systems.

(Adapted from Fig. 1 in [86])
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A key innovation in DETR and by inheritance in DDETR is its use of a one-to-
one assignment between model predictions and ground-truth boxes, implemented
via the Hungarian algorithm [38, 51]. At each training step, the model produces
Q candidate boxes and associated class scores for each image. The Hungarian
matcher then finds the optimal bipartite matching between the Q predictions and
the N ground-truth boxes by minimizing a composite cost:

Cost(i, j) = ccls
(
− log pi,j

)︸ ︷︷ ︸
classification cost

+ cbbox
∥∥ bi − bj

∥∥
1︸ ︷︷ ︸

L1 (box) cost

+ cgiou
(
1−GIoU(bi, bj)

)︸ ︷︷ ︸
GIoU cost

(4.1)
where

• pi,j is the predicted probability (after softmax or sigmoid) that query i
matches ground truth j,

• bi and bj are the normalized box coordinates (like the center-width-height
format) for prediction i and ground truth j respectively,

• ccls, cbbox, and cgiou are weighting hyperparameters controlling the relative
importance of classification, `1 box distance, and generalized IoU loss.

Once the optimal assignment is found, each matched pair contributes to the loss
via cross-entropy (or focal/BCE) for classification and a combination of `1 and
GIoU regression losses. Unmatched queries incur only an ’no object’ classification
penalty. This global matching strategy prevents duplicate detections and ensures
a clean one-to-one supervision signal, which is particularly valuable in cluttered
scenes.
Transformer-based vision models are particularly well-known for their capacity to
model global context and long-range dependencies, which has contributed to sig-
nificant improvements in image classification, detection, and segmentation tasks
[18, 54]. In many domains, such as autonomous driving, these contextual cues are
crucial: a blurry object might still be correctly identified as a car simply because
it appears on a road surrounded by other vehicles [19]. However, this reliance
on context offers limited utility in ecological monitoring. In grassland environ-
ments, visual context is often ambiguous or misleading. The background consists
of mostly indistinct foliage, and the presence of one plant has little predictive
value for others. Object categories often differ only in subtle, local details such as
texture, shape, or boundary smoothness. In this case, the design of deformable
attention, which restricts the models focus to local, learned sampling regions,
proves advantageous. While it may sacrifice some global reasoning ability (as
discussed in [54, 83]), this design choice is well suited for unstructured scenes
with high visual clutter and minimal contextual correlation.
In this thesis, the DDETR encoder and decoder depth was reduced from 6 to 2
layers each. This modification serves several practical and methodological pur-
poses: it speeds up training, reduces overfitting when working with limited data,

32 Mirko Lehn



4.2 Training and Model Design

and reflects a realistic deployment scenario where lightweight models are pre-
ferred, for example in embedded systems. Prior work has shown that reducing
model depth can in some cases improve generalization and convergence in data-
scarce settings [83]. Moreover, the architectural modifications introduced here
are compatible with the broader DDETR framework and can be scaled back up
to the original depth in future work or production settings.
Finally, DDETRs modularity makes it especially amenable to the integration
of adapter modules, enabling parameter-efficient updates during SSL and fine-
tuning. These combined characteristics (efficiency, adaptability, strong fine-grained
detection, and compatibility with lightweight training strategies) make it a suit-
able foundation for the model pipeline proposed in this thesis.

4.2.4 Adapter Integration Strategy
As introduced in Section 3.4, this work builds on the Houlsby adapter architec-
ture, which inserts lightweight, bottleneck-style modules into transformer layers
for efficient fine-tuning [31]. That section covered the adapter structure, mathe-
matical formulation, and motivation from a parameter-efficient training perspec-
tive. A visual overview of the original adapter design is shown in Figure 4.6.
Adapters were inserted into both the encoder and decoder blocks of the trans-
former. Specifically, one adapter was added to each of the two feedforward sub-
layers (fc1 and fc2) per transformer block. Each adapter follows a bottleneck
structure consisting of a down-projection, a nonlinearity (ReLU), and an up-
projection back to the original size:

Adapter(x) = Wup · σ(Wdown · x) (4.2)

where Wdown ∈ Rd×r, Wup ∈ Rr×d, and σ denotes a nonlinearity (here, ReLU).
This allows the adapter to learn task-specific transformations with minimal ad-
ditional parameters.
Following ideas from AdaptFormer [13], a gated residual connection is used
to modulate the adapters influence on the transformer layer:

x′ = x+ α · Adapter(x) (4.3)

where α ∈ Rd is a learnable gating vector, initialized to a small value (0.3 for ex-
ample). This mechanism softly regulates the integration of adapter features into
the residual stream, offering control over adaptation strength while maintaining
stable optimization. It builds on concepts from highway networks [66] and resid-
ual learning [29], and has shown to be especially effective in parameter-efficient
transfer learning scenarios [13].
In addition to adapters, feature alignment modules were introduced between the
CNN backbone and the transformer encoder. These modules normalize and
project the multi-scale CNN outputs into a representation that is more com-
patible with the transformers expectations. A gated fusion mechanism that is

Mirko Lehn 33



4.2 Training and Model Design

also implemented using learnable scalar weights is applied here to balance the
influence of raw and adapted features. While this alignment design is inspired by
standard normalization and fusion principles, no specific publication was found
to cite for this exact combination; it is introduced here as a practical solution to
stabilize adapter-only training with frozen backbones.
This adapter-based strategy was selected over other low-rank or hypercomplex
PEFT approaches such as Compacter [47] or LoRA [32], due to its interpretabil-
ity, modularity, and demonstrated effectiveness in enabling parameter-efficient
domain adaptation.

Figure 4.6: Houlsby adapter
bottleneck design. The
original design proposed by
Houlsby [31] consists of a down-
projection to a smaller dimen-
sionality, a nonlinearity, and an
up-projection back to the origi-
nal size. The adapter is inserted
as a residual connection in trans-
former layers to enable efficient
fine-tuning.
(Fig. 2 [31])
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Figure 4.7: Distribution of model parameters across key components in two ar-
chitectural configurations: the default DDETR with six encoder and
decoder layers (top), and a reduced version using only two of each
(bottom). Colors indicate the parameter role during adapter-based
training: frozen weights in blue (including the backbone and selected
encoder/decoder parameters), partially trainable original weights in
orange, and added adapter modules in green.
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4.2.5 Self-Supervised Training: A Teacher/Student Approach
To learn robust feature representations without manual supervision, this thesis
adopts a teacher-student framework inspired by recent developments in SSL, most
notably the BYOL paradigm [25]. The key idea is to train a student model to
mimic the predictions of a teacher model, where both models share the same
architecture, but the teacher is an EMA of the student weights. This asymmetry
stabilizes training and prevents representational collapse, even in the absence of
negative samples or contrastive pairs.

EMA Teacher Updates The teacher weights are updated after every training
step using an EMA strategy, following the formulation:

θteacher
t ← τ · θteacher

t−1 + (1− τ) · θstudent
t (4.4)

where τ is a decay factor close to 1 (0.995 for example). This formulation makes
the teacher a slowly evolving ensemble of past student weights, improving stability
and convergence. Recent work [7] provides a detailed analysis on how to select and
adapt the EMA decay parameter based on the learning rate and training scale.
Their findings motivate the use of dynamic or context-aware EMA scheduling to
improve teacher responsiveness without introducing instability. While this thesis
uses a fixed τ , insights from [7] informed early tuning experiments and highlight
the sensitivity of EMA-based training to hyperparameter choices.

Augmentation Asymmetry Following practices from prior work in SSL [25],
different augmentation strategies were applied to the student and teacher inputs.
The student model receives stronger or more varied augmentations, encouraging
it to develop invariance and robust representations. Meanwhile, the teacher is
exposed to milder or canonical views, ensuring the targets remain stable and
semantically meaningful. This asymmetry improves training dynamics and helps
the student generalize beyond superficial image variations.

Curriculum-Driven Pseudo-Label Selection Instead of providing all pseudo
labels from the teacher from the start, a curriculum learning strategy [5] is em-
ployed. Early training epochs only use high-confidence teacher predictions to
supervise the student, gradually relaxing the threshold to allow more diverse and
potentially ambiguous pseudo labels.
The curriculum is encoded as a progressive scheduling function that determines
how many teacher-predicted boxes are used per image at each epoch. This also
implicitly addresses noise in early predictions by excluding uncertain or redundant
proposals at the start of training.
To further improve robustness, the confidence threshold for accepting teacher pre-
dictions is computed dynamically for each batch using a percentile-based strategy:
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• Scores from teacher pre-
dictions are aggregated
and sorted.

• A threshold is computed
as the average between
the maximum score and
the 75th percentile score
(These values where
chosen based on experi-
ments).

• Only boxes above this
threshold are passed to
the student as pseudo la-
bels. Figure 4.8: Example for dynamic thresholding.

Progressive Loss Scaling Training is supervised by a combination of two loss
terms: a custom loss based purely on box regression (see Section 4.2.6), and
the standard DDETR loss [86], which includes classification. In early epochs,
the classification component may be too unreliable due to noisy pseudo labels.
To address this, a progressive scaling schedule is applied to the default loss.
Specifically, the loss is scaled by a factor of 0.1 in the first epoch, 0.2 in the second,
and so forth which allows the model to focus initially on spatial localization before
gradually introducing classification learning. This incremental weighting ensures
that the model builds a robust spatial understanding before engaging in the more
error-prone task of label discrimination under noisy supervision.

Learning Rate Scheduling A cosine decay schedule [44] is applied to the
learning rate, allowing for larger updates at the start and more refined tuning
toward the end of training. This dynamic schedule facilitates better exploration
of the parameter space in early stages and reduces oscillations as the model
converges, which is particularly beneficial for self-supervised objectives that rely
on noisy pseudo labels.

Simplified Student-Teacher Evaluation To monitor whether the student
is successfully imitating the teacher or collapsing entirely, a simple safety met-
ric is computed at the end of each epoch. On a small set of images from the
target domain (KIhUG dataset), both models make predictions using the same
input. The students predicted boxes are compared against the teachers pseudo
boxes using intersection-over-union and a fixed matching strategy. The percent-
age of matched boxes is logged. This serves as a safeguard to detect undesirable
training behaviors such as representational collapse (close to 0% match rate) or
excessive copying (100% matches too early). However, it is not used as a formal
performance metric and does not evaluate detection quality.
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Motivation and Benefits This EMA-based teacher-student setup offers a
lightweight and stable approach for learning domain-relevant representations with-
out labels. It complements the architectural constraints introduced by the re-
duced model size and adapter-based fine-tuning, forming a cohesive strategy for
low-resource transfer learning. The use of curriculum learning, adaptive thresh-
olds, dynamic loss scaling, and cosine learning rate scheduling creates a well-
aligned training regime that improves stability, reduces overfitting, and acceler-
ates convergence.

Figure 4.9: Visualization of the SSL training strategy combining EMA teacher-
student learning with curriculum scheduling. Each epoch block il-
lustrates how the student learns from pseudo labels generated by the
EMA teacher. The share of teacher-labeled data increases over epochs
(e.g., 25% 50% 75%), while the learning rate is decreased progres-
sively. Additionally, the influence of the standard DDETR (which
includes classification) is gradually increased via an epoch-dependent
weight multiplier. This approach stabilizes training and gradually re-
fines the models internal representations while softly introducing the
classification task.

4.2.6 Loss Functions and Optimization Techniques
The loss function used during self-supervised training combines multiple com-
ponents, each designed to optimize a specific part of the prediction task. As
described in Section 4.2.5, a curriculum learning strategy gradually increases the
influence of the default DDETR loss during early training epochs.

Custom Intersection over Union (IoU)-Based Localization Loss A cus-
tom matching loss based on spatial alignment is used to supervise the student
model’s bounding box predictions. For each target box in the pseudo-label set,
the students best-matching predicted box (based on maximum IoU) is selected.
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The final localization loss is the sum of:

• Mean absolute error (L1 loss) between matched box pairs in center-size
format.

• Generalized IoU (GIoU) loss [58] between the same boxes converted to
corner format.

Only matched pairs with an IoU above 0.5 are included in the loss calcula-
tion, a threshold commonly used in object detection benchmarks to define valid
matches [41]. This focus on sufficiently overlapping predictions helps avoid pe-
nalizing the model for unmatched or low-confidence boxes during early stages.

Curriculum-Weighted Default Loss In parallel, the default DDETR loss
[86] is included with a gradually increasing weight over training epochs. This loss
encompasses classification, bounding box regression, and auxiliary losses from
intermediate decoder layers. These auxiliary losses help stabilize optimization
by enforcing useful gradients throughout the entire decoder stack, not just the
final output layer. As part of the teacher-student curriculum (Section 4.2.5), the
classification component starts with low influence and grows in importance as the
student becomes more aligned with the teacher.

Optimization Strategy The AdamW optimizer [45] is used together with a
cosine learning rate schedule [44]. This combination balances early exploration
and late-stage convergence, and is well-suited for noisy supervision signals and
fine-grained learning dynamics.
Additional loss terms used as regularizers are discussed in the Section 4.2.8.

4.2.7 Collapse Risks in Self-Supervised Training
SSL with pseudo labels introduces failure modes that differ from those in super-
vised training. These issues can arise from architectural limitations, loss design,
spectral properties of learned representations [79], or unstable dynamics in EMA-
based frameworks [7]. They include both degenerate optimization behaviors and
subtle dynamics linked to noisy supervision or unstable signals. While many are
known from general SSL literature, such as representation collapse in BYOL [25],
overconfidence in FixMatch [65], and teacher-student drift in EMA models [68],
they manifest differently in detection tasks.
Table 4.1 provides an overview of observed risks. Each row lists a collapse mode,
its training stage, and a brief description. Though not all issues are unique to
this work, they were empirically encountered. Some problems − like underconfi-
dent predictions or teacher−student agreement without learning − are especially
common in dense prediction tasks with weak visual signal.
Following the risk overview, a set of mitigation strategies is presented to address
these failure modes.
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Risk or
Collapse Mode

During Description

Representation
Collapse

SSL The student model converges to trivial or uniform
outputs, failing to encode meaningful features. This
often occurs when entropy is not encouraged and di-
versity is lost.

Overconfident
Predictions

SSL The model becomes too certain about noisy pseudo
labels early in training, locking in incorrect patterns
and reducing generalization.

Underconfident
Predictions

Both The model avoids making strong predictions, hover-
ing around < 0.5 logits to minimize classification loss.
Common in ambiguous tasks with subtle class dis-
tinctions.

Overfitting to
Noisy Labels

SSL The model memorizes pseudo labels (including their
systematic errors) instead of learning to generalize
beyond them.

Degenerate Box
Outputs

Both The model exploits box loss functions by producing
unrealistic boxes (extremely small or stretched), un-
less regularized properly.

Teacher-Student
Drift

SSL The EMA teacher and the student model diverge
from one another, destabilizing the learning signal
and breaking knowledge transfer.

Training
Instability

Both Caused by sudden loss spikes, poor scheduling, or
unbalanced objectives, leading to divergence or de-
graded convergence.

Pseudo-Label
Mimicry

SSL The model learns to imitate the heuristics of the
pseudo-label generator rather than develop general
object understanding, leading to high loss perfor-
mance but poor real-world generalization.

Exploration
Decay

Both Instead of discovering new signal, the model gradu-
ally loses confidence and predicts only background,
especially in difficult or uncertain regions. This leads
to poor feature diversity.

Table 4.1: Common risks and failure modes encountered during self-supervised
object detection using pseudo labels. The During column indicates
whether the issue can arise only during SSL or also during Fine-Tuning
(Both). Some failure modes are well-documented in the literature on
SSL (like representation collapse or teacher-student drift), while others
were observed empirically in the specific context of domain-adapted or
noisy-label training.
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4.2.8 Regularization and Stabilization Techniques
To ensure stable training and avoid collapse during SSL, a combination of regular-
ization techniques and architectural modifications were employed. The following
paragraphs describe each strategy in detail, including both standard and custom
components.

EMA Stability Considerations Recent work [7] suggests that the stability
and effectiveness of EMA-based training is sensitive to the choice of decay rate
τ , especially as model size and learning rate scale. While this thesis uses a fixed
τ = 0.995 during training (see Section 4.2.5), future work could explore adaptive
schedules or temperature-aware scaling strategies to improve robustness.

Weight Decay To discourage overfitting and promote simpler models, a weight
decay term is applied to the model parameters. The loss is defined as

Lweight decay = λ‖θ‖2

where θ denotes the model weights and λ is a small regularization constant.
This penalizes large parameter values and encourages the model to distribute
importance more evenly across the network.

Learning Rate Scheduling To guide optimization, a cosine learning rate
schedule inspired by SGDR is employed:

η(t) = η0 · 0.9btc

where η0 is the initial learning rate and t represents the current epoch. This decay
schedule helps prevent training instabilities by allowing large updates early and
gradually stabilizing learning in later stages.

Dropout Variants Dropout is used in multiple forms to regularize different
parts of the network. In its classical form, dropout applies a random mask to
neuron outputs:

y = x ·mask
where the mask is sampled from a Bernoulli distribution with dropout probabil-
ity p. This is applied to the fully connected layers to prevent co-adaptation of
features.
In attention mechanisms, attention dropout is applied to the attention weights
rather than to the activations themselves. Similarly, activation dropout is em-
ployed at the output of activation layers to reduce overfitting by introducing
controlled noise.
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LayerDrop Inspired by structured dropout, LayerDrop randomly disables en-
tire transformer layers during training:

Layerl =
{
1 with probability 1− p

0 with probability p

As shown in [20], this encourages the network to learn redundant representations,
which can later be pruned or compressed during deployment without retraining.

Auxiliary Losses The standard Deformable DETR loss includes auxiliary pre-
dictions at intermediate decoder layers. The total loss is given by:

Ltotal = Ldet +

Llayers∑
l=1

λaux · L(l)
aux

as proposed by [86]. This strategy provides early supervision and smooth gradi-
ents to all decoder layers, facilitating convergence and reducing vanishing gradient
problems.

Spectral Regularization Awareness Beyond structural and loss-based strate-
gies, recent studies highlight the role of spectral properties in SSL collapse [79].
While this thesis does not explicitly modulate spectral responses, the introduced
regularization techniques like entropy loss and orthogonal projection help indi-
rectly encourage a diverse spectrum of feature responses.

Entropy Loss To avoid overconfident predictions and promote diversity in the
output, an entropy-based regularization term is applied to the predicted class
logits:

Lent = −
(
score log(score + 1e−8)

)
− (1− score) log(1− score + 1e−8)

This penalizes low-entropy outputs and prevents the model from collapsing into
a degenerate solution where all predictions are constant or binary.

Box Shape and Size Regularization Two additional custom losses are used
to prevent degenerate box predictions. The box size penalty is defined as:

Lsize =
∑
i

|widthi − heighti|

which encourages boxes to be approximately square, mitigating extreme aspect
ratios.
The box shape penalty complements this by directly penalizing the aspect ratio:

Lshape =
∑
i

(
widthi

heighti
− 1

)2
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Together, these losses improve the plausibility and interpretability of box propos-
als and reduce the risk of degenerate boxes being favored during optimization.

Orthogonal Projection Loss To further encourage feature separability and
improve clustering in the learned embeddings, an orthogonal projection loss is
applied:

LOPL = (1− s) + γ · |d|
as introduced by [55]. This ensures that learned features span a broader, more
useful space, promoting robustness in downstream tasks.

Box Jittering and Dropout To improve robustness and avoid overfitting to
noisy pseudo boxes, spatial data augmentation is applied directly to the pseudo-
labels. Box jittering randomly shifts and scales bounding boxes slightly, while
box dropout randomly omits a subset of pseudo boxes before training. These
strategies encourage the model to generalize beyond the exact geometry of the
pseudo-labels, preventing memorization and reinforcing spatial invariance.

Student-Specific Augmentation In the teacher-student setup, predictions
are generated by the teacher on already augmented images. After this step,
additional student-specific augmentations (such as random color jitter) are ap-
plied before passing the image to the student model. This enforces consistency
and encourages the student to learn invariance under different viewing conditions
without affecting the pseudo-label quality.

4.2.9 Metrics
Evaluating self-supervised object detection models requires carefully chosen met-
rics that can meaningfully track learning progress and model quality in the ab-
sence of human-annotated labels. This section outlines the metrics used through-
out the training and evaluation phases of this work and contrasts them with
strategies used in related literature such as DETReg [3].

Comparison with Prior Work DETReg [3], a closely related self-supervised
object detection method, does not evaluate its pretraining stage using standard
object detection metrics. Instead, it assesses performance indirectly: the self-
supervised model is used to initialize a downstream fine-tuning run, and the
quality of the pretraining is inferred from improved convergence speed and higher
mean Average Precision (mAP) values after fine-tuning. This makes it difficult
to analyze or compare self-supervised representations in isolation.

During SSL Training: Consistency Check via IoU To monitor training
progress and detect collapse during self-supervised training, a simple yet informa-
tive consistency metric is used. A fixed set of test images from the KIhUG dataset
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is passed through both the student and teacher model after each epoch. The pre-
dicted boxes are matched, and their Intersection-over-Union (IoU) is computed.
The average IoU is logged as:

"avg_iou": 0.7495

This value reflects the alignment between teacher and student outputs. If the
value stagnates near zero or one, it may indicate collapse (one model blindly
copies the other, or both produce trivial predictions). A healthy SSL process
maintains a moderate and gradually improving avg_IoU.
Additional statistics such as average L1 and GIoU loss, entropy, aspect ratio
penalties, orthogonality losses, and cardinality error are also logged. These help
track model behavior, identifying different kinds of model collapse and support
debugging if necessary.

After SSL Training: Measuring Recall Although traditional metrics like
Average Precision (AP) are not meaningful in the absence of labels, the final
SSL model can be directly evaluated using COCO-style metrics [41] against the
KIhUG dataset. While most AP values are expected to be low without supervised
fine-tuning, recall remains a reliable metric to quantify how many relevant objects
the model is able to detect without supervision.
An example output from the COCO evaluation tool shows:

"AR_100": 0.183, "Recall@IoU=0.5": 0.507, ...

These recall metrics offer valuable insight into the coverage of the pseudo-labeling
system and demonstrate whether the model has learned any meaningful object
localization ability.

During Fine-Tuning: Loss Monitoring During supervised fine-tuning, train-
ing and validation loss curves are logged for each epoch. These provide insight
into convergence speed, stability, and potential overfitting. Because the model
has already undergone SSL pretraining, the loss is expected to decrease faster
than in a training-from-scratch setup.

After Fine-Tuning: Final COCO Evaluation Finally, the fine-tuned model
is evaluated on the KIhUG test set using the standard COCO evaluation proto-
col. All COCO metrics are reported, including AP, AP50, AP75, and various
recall values. These metrics allow for direct performance comparisons with other
detection approaches.
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4.2.10 Experimental Design and Training Plan
The following experimental plan outlines the key training runs used to evalu-
ate the proposed SSL approach and its impact on downstream object detection
performance. It is structured to allow both absolute and relative performance
comparisons across different model variants and training configurations. Specif-
ically, the experiments are divided into four categories: (i) SSL pretraining, (ii)
standard baselines with or without COCO initialization, (iii) fine-tuning compar-
isons to test the effectiveness of SSL in low-data regimes, and (iv) adapter-based
experiments, which isolate the benefits of training small subsets of parameters.
This plan provides the foundation for a structured and fair comparison of per-
formance, generalization, and data efficiency, particularly focusing on whether
SSL pretraining improves results over supervised baselines. A list of the first
important runs (KIhUG dataset only) is given in Table 4.2, including identifiers,
descriptions, and references to saved checkpoint and log files. These runs form
the core of the evaluation presented in chapter 6.
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ID Description Checkpoint File Log File

SSL Pretraining

P1 SSL EMA curriculum pretrain-
ing, 2×Encoder/Decoder

ssl_pretrain.pth ssl_pretrain.json

Baseline (Finetuning without SSL Pretraining)

B1 Default Deformable DETR,
random init, full data

baseline_rand.pth baseline_rand.json

B2 Default Deformable DETR,
COCO pretrained, full data

baseline_coco.pth baseline_coco.json

B3 Small Deformable DETR
(2x2), COCO pretrained, full
data

baseline_small.pth baseline_small.json

Finetuning Comparison (is SSL helpful?)

C1 P1, Small D-DETR (2×2), SSL
pretrained, full data

small_ssl.pth small_ssl.json

B3.1 B3 with 50% data small_coco_50.pth small_coco_50.json

B3.2 B3 with 25% data small_coco_25.pth small_coco_25.json

B3.3 B3 with 10% data small_coco_10.pth small_coco_10.json

B3.4 B3 with few-shot (100) small_coco_fs.pth small_coco_fs.json

C1.1 C1 with 50% data small_ssl_50.pth small_ssl_50.json

C1.2 C1 with 25% data small_ssl_25.pth small_ssl_25.json

C1.3 C1 with 10% data small_ssl_10.pth small_ssl_10.json

C1.4 C1 with few-shot (100) small_ssl_fs.pth small_ssl_fs.json

Adapter-Based Experiments (many more necessary

A1 SSL EMA pretraining, 2×2
DETR with Adapters only

ssl_adapt.pth ssl_adapt.json

A2 Finetune B2 (coco init full
DETR) + Adapters only

base-
line_adapt.pth

baseline_adapt.json

A3 Finetune A1 (SSL + Adapters),
2×2 + Adapters only

ssl_base_adapt.pth ssl_base_adapt.json

Table 4.2: Rough overview of planned training runs (KIhUG only).
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5 | Implementation
This chapter describes the technical realization of the methods outlined in Chap-
ter 4, focusing on how the proposed training strategy was translated into a
functioning and reproducible system. While the methodology chapter focused
on conceptual aspects (such as the training loop, regularization techniques, and
pseudo-label generation) this chapter covers the engineering details: code struc-
ture, execution flow, and integration with compute infrastructure.
The implementation is organized as a modular pipeline, with clearly separated
components for data preprocessing, model loading, loss computation, training
orchestration, evaluation, and logging. Emphasis is placed on flexibility and re-
producibility: configuration files define each experiment in a declarative manner,
and all training runs are launched in isolated environments via Simple Linux
Utility for Resource Management (SLURM) job scripts.
Where applicable, this chapter explicitly references the design decisions presented
in Chapter 4. For instance, the teacher−student setup described in Section 4.2.5
is matched by an EMA-based training script, and confidence scheduling mecha-
nisms are implemented exactly as proposed in that section. The structure of this
chapter roughly mirrors the chronological order of a typical experiment: starting
with system setup and model configuration, continuing with the implementation
of the self-supervised pretraining pipeline, and ending with supervised fine-tuning,
evaluation tools, and practical concerns such as logging and monitoring. Code
listings and figures are included where they help clarify implementation choices,
but overly detailed or redundant listings are avoided in favor of conceptual trans-
parency.

5.1 System and Environment Setup
This section provides an overview of the computational infrastructure and soft-
ware environment used to execute the training pipelines. Emphasis is placed on
reproducibility, modularity, and scalability. These are crucial aspects for manag-
ing complex training workflows, particularly under SSL regimes with large-scale
data.
All experiments were conducted on a dedicated SLURM-managed cluster com-
prising two high-performance compute nodes. Each node was equipped with
a modern multi-core Central Processing Unit (CPU), ample memory, and an
NVIDIA GeForce RTX 4090 Graphics Processing Unit (GPU). Datasets were
centrally stored on a 14 TB Network-Attached Storage (NAS) volume mounted
to both nodes, enabling fast and shared access during training. The hardware
configuration used throughout this work is summarized in Table 5.1.
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To ensure consistent execution and reduce dependency conflicts, all training was
performed inside containerized environments using SLURMs native container sup-
port. This setup guaranteed full Compute Unified Device Architecture (CUDA)
acceleration for GPU workloads. Broadly used core libraries for Deep Learn-
ing (DL), data augmentation, and image processing (including PyTorch, Albu-
mentations, OpenCV, and Pillow) were bundled within the container image. Ta-
ble 5.2 outlines the key components of the used software stack.

Table 5.1: Hardware Configuration of the SLURM Cluster Node
Component Specification

Hostname iti-dl-1.mni.thm.de

Operating System Ubuntu 24.04.1 LTS (Noble Numbat)

Kernel Version 5.15.0-140-generic

CPU Intel Core i9-13900K (13th Gen), 32 threads

Cores / Threads 24 cores (P+E), 32 threads, 1 socket

Cache L1: 896 KiB, L2: 32 MiB, L3: 36 MiB

Memory (RAM) 125 GiB total

Swap Space 8.0 GiB

GPU NVIDIA GeForce RTX 4090, 24 GiB VRAM

CUDA Version 12.8

GPU Driver Version 570.133.20

Disk Storage 4.6 TiB (local), 14 TiB (NAS, 9.9 TiB used)

Mounted Datasets /datasets

Table 5.2: Software Environment Inside the Training Container
Component Version / Details

Container OS Ubuntu 24.04.1 LTS

Python 3.12.3

PyTorch 2.6.0a0

CUDA Support in PyTorch Enabled (12.6 runtime)

NVIDIA Container Toolkit Enabled via SLURM

SLURM Job Management Used for distributed job execution

Dataset Access Direct mount of NAS: /datasets
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5.2 Training Infrastructure and Script Structure
Figure 5.1 provides an overview of the complete training setup, including the
two core workflows − self-supervised pretraining (left) and supervised fine-tuning
(right). Each pipeline follows a modular structure, with separate scripts respon-
sible for configuration loading, model setup, data handling, core training logic,
and logging. Script dependencies are indicated by arrows, while color coding
highlights functional roles across the system.
Experiment configuration is managed via a single YAML file that defines all
relevant settings for both training stages. This includes hyperparameters, dataset
splits, augmentation strategies, logging paths, and checkpoint management. The
YAML file is parsed at runtime and replaces the need for complex command-line
argument parsing. While this single-profile setup does not support simultaneous
experiments, it offers clarity, traceability, and consistency for sequential runs.

Listing 5.1: Example Snippet from config.yaml

01 # === Paths and Directories ===
02 BASE_DIR: "/home/mlhn64/ssl_ddetr_mlhn64"
03 ROOT_DIR: "/datasets"
04
05 # === EMA Specific ===
06 EMA_EPOCHS: 6
07 EMA_LEARNING_RATE: 0.0001
08 EMA_DECAY: 0.999
09 TEACHER_TEMPERATURE: 1.1
10 STUDENT_TEMPERATURE: 1.0
11
12 # === Fine -tuning Specific ===
13 FINETUNE_EPOCHS: 50
14 FINETUNE_LEARNING_RATE: 0.00005

Training jobs are launched using SLURM scripts that handle job scheduling, con-
tainerized execution, and dataset mounting. Each SLURM script wraps a specific
entry point − either the self-supervised training script (ema_ddetr.py) or the
fine-tuning script (finetune_ddetr.py) − within a reproducible execution en-
vironment. These job files, while simple, are essential for consistent deployment
across shared computing infrastructure and are designed to minimize configura-
tion drift.
For completeness, the full SLURM job scripts for self-supervised and fine-tuning
stages are provided in Appendix A.2, along with the complete YAML configura-
tion file used throughout the experiments in Appendix A.1.
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Figure 5.1: Schematic overview of the training pipelines and associated scripts.
Left: Self-supervised pretraining based on an EMA teacher-student
strategy with pseudo labels. Right: Supervised fine-tuning with
ground truth labels. Functional components such as configuration
loading, model preparation, data input, and logging are color-coded
for clarity. Arrows denote script dependencies.
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5.3 Model Integration and Adapter Setup
This section describes how the base DDETR model is extended for lightweight,
parameter-efficient training via adapter injection. The modular script load_model.py
consolidates all core logic, including model instantiation, adapter integration,
checkpoint loading, and trainability settings. Adapters are inserted into both
encoder and decoder Feedforward Neural Network (FFN) layers, allowing fine-
grained updates without modifying the full model. A gated residual mechanism
fuses adapter outputs with original activations, and optional alignment layers
wrap the input projection to improve consistency between student and teacher
features. The setup supports full fine-tuning or selective freezing of weights,
controlled via configuration flags. Temperature scaling is optionally applied to
classification logits during EMA-based training, as outlined in Section 4.2.5. Key
features of load_model.py are:

• Loads DDETR from Hugging Face with optional checkpoint initialization.
• Injects lightweight adapters into all transformer FFN layers.
• Wraps input projection layers with feature alignment modules.
• Supports freezing most model weights while keeping adapters trainable.
• Includes optional logit temperature scaling for teacher-student setups.

Listing 5.2: Injecting Adapters into Transformer Layers

01 class Adapter(nn.Module):
02 def __init__(self , input_dim , adapter_dim =64):
03 super ().__init__ ()
04 self.down = nn.Linear(input_dim , adapter_dim)
05 self.act = nn.ReLU()
06 self.up = nn.Linear(adapter_dim , input_dim)
07
08 def forward(self , x):
09 return self.up(self.act(self.down(x)))
10
11 class ModifiedFFN(nn.Module):
12 def __init__(self , original_fc , adapter):
13 super ().__init__ ()
14 self.original_fc = original_fc
15 self.adapter = adapter
16 self.norm = nn.LayerNorm(original_fc.in_features)
17 self.gate = nn.Parameter(torch.full(( original_fc.in_features ,)

↪→ ,0.3))
18
19 def forward(self , x):
20 x = x + self.gate * self.adapter(x)
21 x = self.norm(x)
22 return self.original_fc(x)
23
24 def integrate_adapter(layer , target_attr , adapter_dim =64):
25 orig = getattr(layer , target_attr)
26 adapter = Adapter(orig.in_features , adapter_dim)
27 modified = ModifiedFFN(orig , adapter)
28 setattr(layer , target_attr , modified)
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5.4 Self-Supervised Pretraining Pipeline (EMA)
This section details the implementation of the self-supervised pretraining work-
flow built around a teacher-student architecture with EMA-based weight updates.
The goal is to train the DDETR backbone on unlabeled, in-domain images using
pseudo labels generated by the teacher model. This enables the model to learn
robust, domain-specific object representations without requiring ground-truth an-
notations.
The training pipeline integrates several mechanisms to improve learning stability
and data efficiency. These include curriculum-based pseudo-label scheduling, dy-
namic confidence thresholding, temperature-scaled logits, and auxiliary losses for
semantic alignment and regularization. Key components like the pseudo label al-
gorithm, loss functions or augmentation strategies are implemented in a modular
way to allow flexible experimentation and targeted ablations.
The remainder of this section explains the key components of the pipeline and
how they interact in the training loop. Additional implementation details on
curriculum and threshold scheduling are referenced from Section 4.2.5.

5.4.1 Pseudo Label Generation

Figure 5.2: Visual comparison of seven image samples from different datasets
used in this thesis. The first row shows the original RGB input.
The second row presents the corresponding negated A-channel from
the CIELAB (LAB) color space, highlighting foreground structures.
The third row displays the GreenRed Vegetation Index (GRVI) maps,
which emphasize vegetation similarly but often with stronger contrast.
Both are computationally efficient and suitable for on-the-fly pseudo-
label generation.
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A central contribution of this thesis is the development of a fast and effective
pseudo-label generation algorithm tailored to DETReg-style training. As outlined
in Section 4.2.5, DETReg originally relied on Selective Search to generate object
proposals. An approach that was critically questioned in earlier work and was
considered inefficient in terms of localization in complex scenes [30].
During the exploratory phase of this work, several alternative pseudo-labeling
strategies were considered. HyperPixel using SLIC superpixels showed promis-
ing segmentation quality but was ultimately excluded due to its computational
overhead, which rendered it impractical for on-the-fly generation during training.
To enable scalable and real-time pseudo-label generation for SSL, a lightweight
strategy was adopted based on color-space transformation and vegetation index
analysis, as initially introduced in Section 4.2.2. Initially, converting input images
to the LAB color space and negating the A-channel (which encodes the green-
magenta axis) proved to be a simple yet effective method for isolating green plant
structures. In parallel, the Green-Red Vegetation Index (GRVI), a variant often
used in vegetation analysis, was evaluated. Interestingly, GRVI maps produced
qualitatively similar foreground masks to the negated A-channel, but often with
improved contrast − making them preferable in most scenarios.
Figure 5.2 illustrates a side-by-side comparison across seven representative sam-
ples from datasets used for SSL and fine-tuning. It shows the original RGB input
(top), the negated LAB A-channel (middle), and the GRVI output (bottom),
supporting the use of both techniques as viable preprocessing steps.
Building on these observations, a complete pseudo-labeling pipeline was imple-
mented, transforming raw visual cues into binary masks and, ultimately, bound-
ing boxes suitable for object detection pretraining. The full process is shown in
Figure 5.3, which outlines each step in the pipeline: GRVI computation, total
variation denoising, Otsu thresholding, morphological filtering, and final segmen-
tation via watershed transformation. A slightly simplified version of the core logic
(focusing only on the pseudo-label generation) is provided in Appendix A.3.
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Figure 5.3: Visualization of the pseudo-label generation pipeline used during self-
supervised training. Each column shows one dataset sample (used
in either SSL or fine-tuning). Each row corresponds to a processing
stage: from top to bottom − original image, GRVI transformation,
total variation denoising, Otsu thresholding, morphological filtering
(erosion/dilation), watershed segmentation, and final bounding box
generation. The method is tailored for detecting green-on-green plant
structures in natural grassland environments.
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5.4.2 Teacher-Student Model Updates with EMA
To stabilize learning under weak supervision, this work employs a teacher-student
architecture based on EMA updates [68, 25]. The teacher model is initialized as
a frozen copy of the student and is not directly trained. Instead, it evolves as a
smoothed version of the student throughout training, thereby serving as a more
stable source of pseudo labels.
The teacher is initialized by copying all weights from the student and freezing its
parameters, as shown in Listing 5.4.2. This ensures that the teacher model does
not receive gradients and remains a lagged version of the student.

Listing 5.3: One-time Initialization of the Teacher-Model

01 # Copy student weights to teacher model
02 for t_param , s_param in zip(
03 teacher_model.parameters (),
04 student_model.parameters ()
05 ):
06 t_param.data.copy_(s_param.data)
07 t_param.requires_grad = False

Listing 5.4: EMA Update to Synchronize Teacher with Student

01 @torch.no_grad ()
02 def update_teacher_weights(teacher , student , decay):
03 for t_param , s_param in zip(teacher.parameters (), student.parameters

↪→ ()):
04 t_param.data = decay * t_param.data + (1.0 - decay) * s_param.

↪→ data

During training, after every student update, the teacher is synchronized using
the EMA rule. This is implemented in the function shown in Listing 5.4.2. The
update rule can be written as:

θt ← α · θt + (1− α) · θs

where θt and θs are the teacher and student weights respectively, and α is a decay
constant (typically set between 0.95 and 0.999). This formulation ensures that
the teacher adapts gradually, filtering out noise and short-term variance from the
student’s updates. In this implementation, α is configurable via the config YAML
file, as shown in Appendix A.1.
This EMA-based teacher mechanism is critical for robust pseudo-label generation,
especially in early epochs where the students outputs are unstable. By main-
taining a slowly updating teacher, the training pipeline benefits from smoother
supervision and improved convergence behavior.
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5.4.3 Dynamic Thresholding and Curriculum Scheduling
This work replaces static thresholds and fixed schedules with dynamic, data-
driven alternatives to improve robustness during SSL. The confidence threshold
for accepting teacher predictions is recalculated on a per-batch basis from the
distribution of predicted logits. As shown in Listing 5.6, the threshold is com-
puted as the average between the maximum and 75th-percentile confidence scores
across all predictions. This strategy allows the system to adaptively respond to
the evolving reliability of the teacher model.
In parallel, a curriculum mechanism regulates the mixing of teacher and pseudo
labels. Early in training, a higher proportion of pseudo boxes is favored, while
teacher predictions are gradually phased in as the model stabilizes. This ratio-
controlled mixing is implemented in Listing 5.5, which samples and merges the
appropriate number of boxes from each source.

Listing 5.5: Combining Teacher/Pseudo Boxes According to Curriculum Ratios

01 def mix_teacher_pseudo_boxes(
02 teacher_boxes , teacher_labels ,
03 pseudo_boxes , pseudo_labels ,
04 teacher_ratio , pseudo_ratio ,
05 device
06 ):
07 # Sample fixed ratio of teacher and pseudo boxes
08 num_teacher = int(teacher_ratio * len(teacher_boxes))
09 num_pseudo = int(pseudo_ratio * len(pseudo_boxes))
10
11 t_sample = random.sample(
12 list(zip(teacher_boxes , teacher_labels)),
13 k=min(num_teacher , len(teacher_boxes))
14 )
15 p_sample = random.sample(
16 list(zip(pseudo_boxes , pseudo_labels)),
17 k=min(num_pseudo , len(pseudo_boxes))
18 )
19
20 combined = t_sample + p_sample
21 random.shuffle(combined)
22
23 # Return mixed boxes and labels
24 boxes_combined = torch.tensor(
25 [b for b, _ in combined],
26 dtype=torch.float32 , device=device
27 )
28 labels_combined = torch.tensor(
29 [l for _, l in combined],
30 dtype=torch.int64 , device=device
31 )
32
33 return boxes_combined , labels_combined
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Listing 5.6: Computing a Dynamic Confidence Threshold from Teacher Scores

01 # Flatten teacher logits across batch and compute scores
02 filtered_teacher_scores = [
03 torch.sigmoid(teacher_logits[i])[:,0] for i in range(len(

↪→ teacher_boxes))
04 ]
05 all_teacher_scores = torch.cat(filtered_teacher_scores)
06
07 # Sort and calculate dynamic threshold
08 sorted_scores , _ = torch.sort(all_teacher_scores , descending=True)
09 middle_idx = int(len(sorted_scores) * 0.75)
10 highest_score = sorted_scores [0]
11 middle_score = sorted_scores[middle_idx]
12 CONF_THRESHOLD = (highest_score + middle_score) / 2

5.4.4 Regularization and Collapse Prevention Strategies
Training a student model using pseudo labels, like those derived from a dynam-
ically updating teacher, carries a high risk of collapse. This can manifest as
overconfident but incorrect predictions, loss of box diversity, or convergence to
degenerate solutions (like empty boxes or extreme aspect ratios). To mitigate
these issues, this work employs a combination of regularization losses and aggres-
sive augmentation strategies.

Loss-Based Regularization The student model includes several regulariza-
tion terms in addition to the base detection loss. Orthogonality constraints are
applied to both adapter modules and feature alignment layers, promoting diver-
sity in learned representations. These constraints are enforced via the orthogonal
projection loss introduced in [55] and described earlier in Section 4.2.8. This loss
encourages decorrelated projection weights and prevents representational redun-
dancy.
Entropy regularization is also applied to avoid early overconfidence. It promotes
prediction uncertainty in the initial training stages, enabling the model to explore
alternative hypotheses. Additionally, box geometry constraints are enforced to
penalize extreme aspect ratios and outlier bounding box sizes. These priors help
guide the student away from degenerate configurations, which is important when
pseudo labels are noisy in early epochs.

Augmentation-Based Stability Beyond loss functions, the pipeline includes
augmentations tailored to stabilize training. Before being used for supervision,
the mixed set of EMA-based teacher boxes and pseudo boxes is perturbed using
spatial jitter and box dropout. These introduce stochasticity, discourage overfit-
ting, and simulate label noise.
Further, teacher and student models receive different augmented views of the
same image. This is achieved by applying a dedicated set of image-level transfor-
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mations (such as color jitter, blur, and channel shifts) only to the students input,
using the Albumentations library [8]. This asymmetry reinforces consistency by
requiring the student to match teacher outputs across visual diverse inputs.

Listing 5.7: Computing Jittered Bounding Boxes in Normalized Coordinates

01 # Apply jitter to box in [cx , cy , w, h] format
02 cx += np.random.uniform(-w * jitter_ratio , w * jitter_ratio)
03 cy += np.random.uniform(-h * jitter_ratio , h * jitter_ratio)
04 w += np.random.uniform(-w * jitter_ratio , w * jitter_ratio)
05 h += np.random.uniform(-h * jitter_ratio , h * jitter_ratio)
06
07 # Clamp to [0, 1] and recompute box
08 x1 = np.clip(cx - 0.5 * w, 0.0, 1.0)
09 y1 = np.clip(cy - 0.5 * h, 0.0, 1.0)
10 x2 = np.clip(cx + 0.5 * w, 0.0, 1.0)
11 y2 = np.clip(cy + 0.5 * h, 0.0, 1.0)
12
13 # Final box
14 cx = (x1 + x2) / 2
15 cy = (y1 + y2) / 2
16 w = x2 - x1
17 h = y2 - y1

Listing 5.8: Evaluating Teacher-Student Alignment via IoU at Each Epoch

01 def evaluate_iou_alignment(student_model , teacher_model , dataloader ,
↪→ device):

02 student_model.eval()
03 teacher_model.eval()
04 total_iou , total_gt , total_matched = 0.0, 0, 0
05
06 with torch.no_grad ():
07 for images , _ in dataloader:
08 images = images.to(device)
09 s_boxes = student_model(images).pred_boxes
10 t_boxes = teacher_model(images).pred_boxes
11
12 for s_b , t_b in zip(s_boxes , t_boxes):
13 s_xyxy = cxcywh_to_xyxy(s_b)
14 t_xyxy = cxcywh_to_xyxy(t_b)
15 ious = box_iou(s_xyxy , t_xyxy)
16 best_ious , _ = ious.max(dim =0)
17
18 total_iou += best_ious.sum().item()
19 total_matched += (best_ious > 0.3).sum().item()
20 total_gt += best_ious.numel()
21
22 return {
23 "avg_iou": total_iou / total_gt ,
24 "iou >0.3": total_matched / total_gt
25 }

Monitoring for Collapse To detect model drift and collapse, this implemen-
tation evaluates IoU-based statistics between teacher and student predictions at
the end of each epoch. While not used to alter training dynamics directly, these
metrics act as sanity checks to ensure continued alignment between models.
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5.4 Self-Supervised Pretraining Pipeline (EMA)

Together, these regularization and monitoring strategies form a comprehensive
defense against collapse. By combining principled loss functions with targeted
augmentations and diagnostics, the training loop remains robust even under weak
supervision constraints.

Listing 5.9: Loss Terms for Entropy, Box Geometry, and Adapter Orthogonality

01 # Extract classification scores and boxes
02 logits = outputs.logits # [B, num_queries , 1]
03 boxes = outputs.pred_boxes # [B, num_queries , 4]
04 scores = torch.sigmoid(logits) # class -0 probability
05
06 # --- Entropy Regularization ---
07 # Penalizes overconfident predictions to promote exploration
08 entropy = - (scores * torch.log(scores + 1e-8) +
09 (1 - scores) * torch.log(1 - scores + 1e-8)).mean()
10
11 # --- Aspect Ratio Penalty ---
12 # Discourages extreme box shapes
13 widths = (boxes [..., 2] - boxes [..., 0]).clamp(min=1e-4)
14 heights = (boxes [..., 3] - boxes [..., 1]).clamp(min=1e-4)
15 aspect_ratio = widths / heights
16 aspect_reg = (( aspect_ratio < 0.1)|( aspect_ratio > 10)).float ().mean()
17
18 # --- Size Regularization ---
19 # Penalizes boxes that deviate too much from a target size
20 target_size = 0.2
21 penalty_scale = 2.0
22 size_reg_w = penalty_scale * (( widths - target_size) ** 2).mean()
23 size_reg_h = penalty_scale * (( heights - target_size) ** 2).mean()
24 size_reg = size_reg_w + size_reg_h
25
26 # --- Adapter Orthogonality Loss ---
27 # Promotes diversity in adapter projection weights
28 orth_loss_adapters = 0.0
29 for module in student_model.modules ():
30 if isinstance(module , Adapter):
31 orth_loss_adapters += compute_weight_orthogonality_loss(
32 module.down , gamma=GAMMA_ADAPTERS
33 )
34
35 # --- Feature Aligner Orthogonality Loss ---
36 # Same idea as above , but for pre -adapter aligners
37 orth_loss_aligners = 0.0
38 for module in student_model.modules ():
39 if isinstance(module , PreAdapterFeatureAligner):
40 orth_loss_aligners += compute_weight_orthogonality_loss(
41 module.proj , gamma=GAMMA_ALIGNERS
42 )
43
44 # --- Combine into Total Regularization Loss ---
45 reg_loss = (
46 0.5 * aspect_reg +
47 0.5 * size_reg +
48 1.0 * entropy +
49 1.0 * orth_loss_adapters +
50 1.0 * orth_loss_aligners
51 )
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5.5 Supervised Fine-Tuning
The pretrained model is transferred to the target domain through fully super-
vised learning on manually annotated bounding boxes. The existing training
framework, including dataset interfaces, configuration parsing, logging utilities,
and the core training loop, is reused to ensure simplicity, consistency, and repro-
ducibility across both self-supervised and supervised stages.
No novel algorithms are introduced at this stage. Depending on the chosen con-
figuration, either the entire DDETR network is finetuned or only its lightweight
adapter modules are updated via residual connections. In adapter-only mode,
all backbone weights remain frozen and only the adapter parameters undergo
optimization, yielding an efficient approach for lowdata regimes.
To mitigate the instability of oneclass DETR heads-where low initial confidence
can cause the Hungarian matcher to find no positives and stall trainingan optional
warmup phase is applied. During the first T epochs, the overall loss is computed
as a linear interpolation between the standard classification loss and a reduced
initial weight, gradually increasing the classification component until the full loss
formulation is restored.

• A custom box-only loss (`1 + GIoU), which bootstraps localization regard-
less of confidence

• The standard DETR loss (classification + box + GIoU), introduced grad-
ually to build reliable confidence

Once the warm-up is complete (t > T ), everything is switched to 100% standard
DETR loss. Empirically this prevents under-confidence collapse early on and
yields markedly better convergence.
Listing 5.10 shows the core of this strategy; note that setting T = 0 entirely skips
the warm-up and reduces the loop to the usual DETR fine-tuning.

Listing 5.10: Supervised Fine-Tuning Using Ground-Truth Annotations

01 for epoch in range(1, EPOCHS + 1):
02 model.train()
03 for images , targets in dataloader_train:
04 images = images.to(device)
05 targets = [{"class_labels": t["labels"].to(device),
06 "boxes": t["boxes"].to(device)} for t in targets]
07
08 optimizer.zero_grad ()
09 loss = model(images , labels=targets).loss
10 loss.backward ()
11 optimizer.step()
12
13 scheduler.step()
14 torch.save(model.state_dict (), CHECKPOINT_PATH)
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Listing 5.11: Supervised Fine-Tuning Using Ground-Truth Annotations

01 # Warm -up weight computation (inside epoch loop)
02 if epoch <= WARMUP_EPOCHS:
03 w_custom = 1.0 - (epoch - 1) / WARMUP_EPOCHS
04 w_detr = 1.0 - w_custom
05 # optional: anneal focal alpha
06 model.config.focal_alpha = ALPHA_START + (epoch - 1) / WARMUP_EPOCHS

↪→ * (ALPHA_END - ALPHA_START)
07 else:
08 w_custom , w_detr = 0.0, 1.0

5.6 Evaluation and Visualization Tools
This section outlines the tools and procedures used to quantitatively and quali-
tatively assess model performance. Evaluation is conducted using standardized
COCO metrics to ensure comparability across training phases, while custom vi-
sualization scripts offer insights into prediction quality and training dynamics.

5.6.1 Evaluation Strategy and COCO Metrics
To evaluate detection performance consistently across both the self-supervised
pretraining and supervised fine-tuning phases, this work uses a standardized eval-
uation pipeline based on the official pycocotools API. All predictions are ex-
ported in COCO-compatible JSON format and processed using the same script
to ensure metric comparability across training stages.
The evaluation computes standard COCO metrics, including mAP, AP at specific
IoU thresholds (like AP50 or AP75), and Average Recall (AR). To better track
alignment performance during early training, the script also reports recall at
additional thresholds (e.g., IoU = 0.3, 0.5, 0.7).
A single evaluation script is reused across all experiments by modifying only the
input checkpoint and dataset split, reinforcing consistency and reproducibility.
The core evaluation logic is illustrated in Listing 5.12.

Listing 5.12: Standardized COCO Evaluation Used Across Training Stages

01 from pycocotools.coco import COCO
02 from pycocotools.cocoeval import COCOeval
03
04 # Load COCO -format ground truth and predictions
05 coco = COCO("coco_gt.json")
06 coco_dt = coco.loadRes("coco_dt.json")
07
08 # Run standard COCO evaluation
09 evaluator = COCOeval(coco , coco_dt , iouType="bbox")
10 evaluator.evaluate ()
11 evaluator.accumulate ()
12 evaluator.summarize ()
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5.6.2 Visualization of Predictions
To qualitatively assess training dynamics and supervision quality, custom visual-
ization tools were implemented for both the self-supervised and supervised train-
ing phases. Each tool corresponds to one of the two implemented data loaders
(data_loader_ssl.py and data_loader.py) and supports flexible inspection of
model predictions, pseudo labels, and ground-truth annotations.
Both visualization scripts share a common set of functionalities: they display im-
age batches in a grid (typically 3×2, adjustable via batch size) and allow interac-
tive toggling between different box sources. These include no boxes, pseudo labels
(or ground truth), model predictions, or overlays of both. Additionally, data aug-
mentations can be toggled on or off via loader parameters, enabling analysis of
their visual impact. The visualizations are primarily used as a qualitative tool
to identify issues such as label noise, overconfident predictions, and domain shift
effects. While this section presents an overview figure for illustration purposes,
these tools are used extensively throughout the results and discussion chapter to
support the interpretation of experimental findings and training behavior.

Figure 5.4: Visual overview of batch visualizations used during training and eval-
uation. Top row: images from the SSL dataset collection (left) and
the potato tuber dataset (right). Bottom row: images from the
KIhUG Jacubaea vulgaris dataset (left) and the Rumex weed dataset
(right). No bounding boxes are shown in this overview to keep the
presentation uncluttered. Boxes (pseudo labels, predictions, or both)
can be interactively visualized using the tool described in this section.
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6 | Results
This chapter presents the empirical results obtained from training and evaluating
the proposed object detection model. It covers both quantitative metrics and
qualitative visualizations for different model configurations. The focus lies on
assessing the performance of the baseline fine-tuning approach, the effect of self-
supervised pretraining, and the efficiency of adapter-based learning. Evaluations
are conducted on the KIhUG and, where applicable, on the Rumex Weeds dataset.
All results are interpreted in the context of the research questions outlined in
section 1.2.

6.1 Performance Metrics and Evaluation Criteria
The evaluation of object detection performance in this thesis relies on two comple-
mentary forms of assessment: quantitative metrics computed using pycocotools1

and qualitative visual inspection of predicted bounding boxes. Both methods were
introduced in earlier chapters but are summarized here for clarity and complete-
ness.
Quantitative results are reported using standard COCO evaluation metrics, which
include mean mAP, precision, and recall across different IoU thresholds. Before
evaluation, all model predictions are post-processed with NMS to remove dupli-
cate boxes. These metrics allow consistent comparison across training configura-
tions and datasets. Specifically, the following values are used:

• Average Precision (AP): The area under the precision-recall curve. AP
is averaged over multiple IoU thresholds (from 0.5 to 0.95 in steps of 0.05,
COCO-style), referred to as:

mAP50:95 =
1

10

9∑
i=0

AP0.5+0.05i

• AP@50 and AP@75: Average precision at fixed IoU thresholds of 0.5 and
0.75, representing more lenient and stricter matching conditions, respec-
tively.

• Precision: The ratio of correct positive detections to all detections made:

Precision =
TP

TP + FP

1https://github.com/ppwwyyxx/cocoapi (accessed July 2025).
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6.2 Baseline Performance

• Recall: The ratio of correct positive detections to the total number of
ground truth objects:

Recall = TP
TP + FN

pycocotools is also able to divide the ground-truth objects into size-based cate-
gories and evaluate them separately. While the COCO benchmarks define small
as area ≤ 322, medium as 322 < area ≤ 962, and large as area ≥ 962, these cutoffs
suit everyday objects and not our plant imagery. Instead, we set dataset-specific
thresholds at the 33rd and 67th percentiles of the absolute box areas:

0 ≤ small ≤ Asm < medium ≤ Amd < large ≤ ∞

KIhUG Dataset
Asm = 06136.6 px2 (33 %ile)

Amd = 11090.8 px2 (67 %ile)

Rumex Weeds Dataset
Asm = 26724.6 px2 (33 %ile)

Amd = 64444.7 px2 (67 %ile)

This data-driven binning ensures that each size category contains roughly one
third of all boxes and yields stable, meaningful AP/AR measurements across the
scales present in each dataset.
In addition to these metrics, self-supervised training results are evaluated indi-
rectly by applying the pretrained model to the final annotated target dataset.
The resulting recall provides insight into how well the domain-specific pretrain-
ing captured relevant patterns for the downstream task, even in the absence of
supervised labels during the initial training phase.
Qualitative evaluation complements the numerical results by visualizing predic-
tions on validation images. These examples help identify typical error patterns,
verify detection coverage, and illustrate the impact of different model configura-
tions.

6.2 Baseline Performance
To establish a reliable baseline for later comparisons, this section starts with an
evaluation of three different configurations of the DDETR model, fine-tuned on
the KIhUG dataset (auxiliary loss and the custom warm-up phase were not used
in these experiments):

• the standard model with random initialization
• the same model initialized with COCO-pretrained weights
• a reduced model variant with only two encoder and decoder layers, also

initialized from COCO
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Figure 6.1: Training and vali-
dation loss curves over the first
25 epochs for three DDETR
configurations on the KIhUG
dataset. Green: randomly
initialized model. Orange:
COCO-pretrained baseline.
Black: reduced model with 2
encoder/decoder layers. Note
that auxiliary losses and the
custom warm-up phase were
disabled for this comparison.

As shown in Figure 6.1, the randomly initialized model fails to converge, high-
lighting the need for prior knowledge in low-data regimes. The COCO-pretrained
baseline performs stably and achieves good results. Interestingly, the reduced
model exhibits faster initial convergence and matches the performance of the full
model despite its significantly smaller size. This finding supports its use through-
out the remainder of this thesis as a more efficient alternative without sacrificing
accuracy.

6.2.1 Fine-Tuning on the KIhUG Dataset
Figure 6.2 shows the full 100-epoch fine-tuning run of the depth-reduced DDETR
on the KIhUG dataset. The shaded orange region marks the 50-epoch warm-up
phase, during which a custom box-only loss is blended with the standard DETR
loss to prevent under-confidence collapse; the green dashed line indicates the best-
performing checkpoint at epoch 93. After warm-up, the model relies entirely
on the standard classification+box+GIoU objective, with a smoothly decaying
learning rate, and continues to improve until the final epochs.
In addition to the overall training and validation losses, the plot also breaks out
the three components of the DETR loss:

• Cross-entropy (CE) classification loss,
• BBox (`1) bounding-box regression loss,
• GIoU loss for overlap maximization.

Each of these curves is multiplied by its respective weight in the matching and
loss-weight configuration, so that their sum (together with the warm-up cus-
tom loss when active) yields the total training loss shown. This decomposition
highlights how classification, localization, and overlap objectives evolve over the
course of fine-tuning, and illustrates that gains in overall loss can stem from
improvements in any one or a combination of these components.
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Figure 6.2: Trainings plot of full baseline on KIhUG dataset.

Metric Value

mean AP@[.50:.95] (mAP) 0.4537

mAP@IoU=0.50 (mAP50) 0.7928

mAP@IoU=0.75 (mAP75) 0.4670

AP (Small Objects) 0.1265

AP (Medium Objects) 0.4664

AP (Large Objects) 0.5461

Average Recall @ 1 Detection (AR1) 0.4683

Average Recall @ 10 Detections (AR10) 0.6064

Average Recall @ 100 Detections (AR100) 0.6157

AR (Small Objects) 0.3987

AR (Medium Objects) 0.6267

AR (Large Objects) 0.6730

Recall @ IoU=0.50 0.9769

Recall @ IoU=0.60 0.9122

Recall @ IoU=0.70 0.7290

(a) Quantitative evaluation metrics for the baseline
DDETR model fine-tuned on the KIhUG dataset.

(b) Two qualitative results of
the KIhUG baseline.

Figure 6.3: Performance of the baseline DDETR model on the KIhUG dataset.
Model predictions are shown with red boxes, ground truth labels with
green boxes. Small plants are often missed. Many false positives are
actually accidentally unlabeled plants (see example in subplot b).
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Table 6.3a summarizes the COCO-style evaluation on the held-out test set. The
model achieves an overall AP@[.50:.95] of 0.4537 (AP@50 = 0.7928, AP@75 =
0.4670), with improved performance on small plants (AP = 0.1265) while main-
taining strong results on large objects (AP = 0.5461). Recall at 1 detection is
0.4683, at 10 detections 0.6064, and at 100 detections 0.6157, indicating most
plants are found when enough candidates are considered. Continuous recall at
IoU thresholds of 0.50, 0.60, and 0.75 are 0.9769, 0.9122, and 0.7290, respectively.
Notably, throughout training the classification (cross-entropy) loss remained con-
sistently higher than both the 11 and GIoU terms (see the logs), highlighting
that in these cluttered grassland scenes it is relatively easy to localize candidate
regions but far harder to discriminate between plant structures and background
or among similar plant species. This classification bottleneck was anticipated
given the subtle visual differences and annotation noise in the dataset.
Figure 6.3b presents example detections (red) together with ground-truth boxes
(green). Extensive qualitative visualization reviews showed, that the model reli-
ably localizes medium and large plants, while missing many tiny specimens. Oc-
casional false positives correspond to unlabeled plants in the annotations rather
than outright errors, as shown in the figure. Together, these plots and tables
establish a solid supervised baseline for subsequent comparisons.

6.2.2 Fine-Tuning on the Rumex Weeds Dataset
To establish a comparative baseline, this section begins by referencing results
reported in the original Rumex Weeds dataset paper [26]. The authors eval-
uated multiple YOLOX variantsranging from the lightweight YOLOX-nano to
the deeper YOLOX-m on their weed detection benchmark. These models differ
primarily in parameter count, computational cost, and overall inference speed.
Their performance is summarized in Table 6.2.

Model Params(M) FLOPs(G) mAP50:95 mAP50 Avg. Inference T. (ms)

V100 Jetson NX

YOLOX-m 25.3 73.5 27.8 54.1 14.7 48.7
YOLOX-s 8.9 26.6 27.1 51.4 12.2 25.9
YOLOX-tiny 5.0 15.1 26.9 52.8 11.1 21.4
YOLOX-nano 0.9 2.5 26.4 52.2 13.88 18.9

Table 6.2: Reported detection performance and inference speed of different
YOLOX variants on the RumexWeeds dataset, reproduced from [26].
YOLOX-tiny is selected in the original work for its favorable trade-off
between detection performance and real-time inference capability.

Mirko Lehn 67



6.2 Baseline Performance

Figure 6.4: Trainings plot of full baseline on Rumex dataset.

Metric Value

mean AP@[.50:.95] (mAP) 0.2749

mAP@IoU=0.50 (mAP50) 0.5672

mAP@IoU=0.75 (mAP75) 0.2356

AP (Small Objects) 0.1533

AP (Medium Objects) 0.4548

AP (Large Objects) 0.4587

Average Recall @ 1 Detection (AR1) 0.2750

Average Recall @ 10 Detections (AR10) 0.4717

Average Recall @ 100 Detections (AR100) 0.5118

AR (Small Objects) 0.4205

AR (Medium Objects) 0.6323

AR (Large Objects) 0.7038

Recall @ IoU=0.50 0.9265

Recall @ IoU=0.60 0.8195

Recall @ IoU=0.70 0.6032

(a) Quantitative evaluation metrics for the baseline
DDETR model fine-tuned on the Rumex dataset.

(b) Two qualitative results of
the RumexWeeds baseline.

Figure 6.5: Performance of the baseline DDETR model on the Rumex dataset.
Model predictions are shown with red boxes, ground truth labels with
green boxes. Many predictions are under-confident and are only visi-
ble by reducing the threshold for display in the visualization script.
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6.3 Self-Supervised Pretraining

While the original authors prioritized inference efficiency, this thesis uses the
DDETR model for all experiments. Due to its significantly larger capacity and
architectural advantages, it is expected to outperform the lightweight YOLOX
variants. To establish a meaningful comparison, the model is fine-tuned on the
RumexWeeds dataset using only the default COCO-pretrained weights, mirroring
the baseline approach previously used for the KIhUG dataset. The losses during
training progression are visualized in Fig. 6.4. The quantitative and qualitative
results are shown in Fig. 6.5.
Despite its greater capacity, the DDETR baseline only marginally outperforms
the original Rumex Weeds benchmarks. Several factors likely contribute to this
result:

1. Limited training data. The Rumex datasets training split is smaller than
KIhUG, offering fewer examples for the model to learn robust features.

2. Extreme scale variance. Rumex plants often occupy an entire 512×512
tile, resulting in very large bounding boxes that leave little background
context. This contrasts with the smaller, more varied crops in KIhUG and
can confuse the models localization and scale priors. This extreme variance
is also detailed in Section 6.1, where custom size thresholds for use with
pycocotools are defined.

3. Ambiguous label boundaries. In case of bigger plants, large, lobed
leaves and overlapping canopies make it difficult to decide where one Rumex
plant ends and another begins, introducing annotation noise that challenges
the detector.

Together, these challenges constrain the improvements attainable by a high-
capacity transformer on Rumex. However, at least the limited-data issue can
be mitigated through self-supervised pretraining before the fine-tuning.

6.3 Self-Supervised Pretraining
This section presents the self-supervised pretraining (Section 4.2.5) outcome on
unlabeled grassland and related data. We first examine convergence behavior,
then show qualitative evidence of domain-aware feature learning, and finally quan-
tify improvements over the raw pseudo-label generator.
Figure 6.6 confirms stable alignment between teacher and student across six
epochs, with loss components smoothly balancing regression and location based
terms while slowly introducing classification. The sustained IoU agreement (0.7-
0.8) indicates successful avoidance of representational collapse.
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6.3 Self-Supervised Pretraining

Figure 6.6: Self-supervised pretraining progress over 6 epochs. Top: Epoch-wise
IoU agreement between teacher and student networksstability in the
0.7-0.8 range indicates successful feature alignment without collapse.
Bottom: Total loss decomposition into custom location-only loss,
standard DETR loss (classification + bbox + GIoU), and regulariza-
tion terms, showing smooth convergence and balanced contributions
from each component.

Beyond mere convergence, the model must learn semantic plant features rather
than replicate low-level pseudo-label heuristics. Figure 6.7 contrasts raw algo-
rithmic boxes with EMA-refined detections on both grassland and out-of-domain
tuber images.
Encouraged by improved precision on pseudo samples, we next evaluate the pre-
trained detector qualitatively on unseen KIhUG validation images. Figure 6.8
illustrates that many target plants are correctly localized (despite a conservative
confidence threshold) highlighting genuine feature understanding.
To quantify this refinement, Table 6.4 compares recall and AR@100 metrics
between the raw pseudo-label generator and the EMA-trained detector on the
KIhUG split. The substantial gains across IoU thresholds demonstrate that the
SSL model converts noisy proposals into accurate plant detections.
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6.3 Self-Supervised Pretraining

(a) SSL pseudo-labels on grassland (b) Pretrained model predictions

(c) SSL pseudo-labels on potato tubers (d) Pretrained model predictions

Figure 6.7: Comparison of pseudo-labels and EMA-pretrained model predictions
on in-domain grassland and out-of-domain potato tuber images.
(a) Raw pseudo-labels over grassland input.
(b) EMA-pretrained detector output on the same grassland image.
(c) Raw pseudo-labels over potato tuber input.
(d) EMA-pretrained detector output on the same tuber image.
The reduction of false and irrelevant boxes on the grassland image
(like boxes including the person) as well as rare predictions in the
tuber image demonstrates that the EMA-pretrained model learned
domain-specific plant features rather than merely replicating the
pseudo-label generator.
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Figure 6.8: Three unseen KIhUG validation samples (not used during pretraining)
with EMA-pretrained model predictions (red) overlaid on ground truth annota-
tions (green). Extensive visualizations show that many target plants remain un-
detected or only partially covered. By lowering the confidence threshold slightly
below 0.5 many more good predictions are made, but the visualization becomes
more cluttered.
Table 6.4: Quantitative recall comparison on
domain-specific data (KIhUG validation split)
between the raw SSL pseudo-box generator
and the EMA-pretrained model. The detec-
tors higher recall at all IoU thresholds and
AR@100 demonstrates that the model refines
pseudo-labels into more accurate plant detec-
tions.

Metric Pseudo Model

AR@100 0.1372 0.2256

Recall@IoU0.5 0.4032 0.6157

Recall@IoU0.6 0.2326 0.4029

Recall@IoU0.7 0.1192 0.2147

Taken together, these results show that the EMA-based pre-training on pseu-
doboxes not only remains stable, but also learns meaningful, domain-specific fea-
tures. This sets the stage for improved downstream fine-tuning, which is explored
in the following section.

6.4 Fine-Tuning After SSL Pretraining
Building on the baseline results of COCO-initialized models (section 6.2), we now
assess the impact of initializing from our EMA-SSL checkpoint. In each experi-
ment, we fine-tune the same DDETR architecture with identical hyperparameters
and data fractions on the KIhUG and RumexWeeds datasets. By overlaying the
SSL-initialized loss curves on top of the obtained COCO-initialized baseline, it is
possible to quantify how domain-aware pretraining accelerates convergence and
improves performance in low-data regimes.
The experiments begin by directly overlaying the SSL-initialized fine-tuning curves
on top of the simple COCO-initialized baselines (no warm-up phase) from Sec-
tion 6.2. Figure 6.9 displays training and validation losses across the five different
data regimes on both KIhUG and RumexWeeds. This comparison isolates the
effect of the initial weight choice under identical optimization settings.
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Fine-tuned on KIhUG

(a) COCO-pretrained (b) EMA-pretrained

Fine-tuned on Rumex

(c) COCO-pretrained (d) EMA-pretrained

Figure 6.9: Comparison of training and validation loss across data regimes and
pretraining strategies. Each subplot shows loss curves for five different
training set sizes (100%, 50%, 25%, 10%, and few-shot), using either
COCO-based or EMA-based pretraining. Top: Fine-tuning on the
KIhUG dataset. Bottom: Fine-tuning on the Rumex weed dataset.
These plots display only the first 25 epochs. Note that auxiliary losses
and the custom warm-up phase were disabled for this comparison.

Notably, the gap between COCO and EMA-SSL initializations widens as the
available labeled data shrinks. To pinpoint the source of this advantage in the
few-shot case, we zoom into the 100-image curves in Figure 6.10 and decompose
the total loss into its classification, localization, and regularization components.
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Figure 6.10: Detailed loss decomposition during few-shot fine-tuning on 100
KIhUG images, comparing COCO-pretrained (dark gray) and
EMA-SSL-pretrained (orange) initializations. These curves corre-
spond to the few-shot traces from Fig. 6.9 (top-row, in blue), now
recolored and expanded to show the total loss alongside its three
components over training epochs. The lower starting CE loss for
SSL highlights how self-supervised pretraining provides stronger ini-
tial classification confidence on plant targets.

While the initial 25-epoch experiments clearly demonstrate an early advantage
for the SSL-initialized model, they also revealed that a simple warm-up strat-
egy could mitigate the difficulty of optimizing the cross-entropy loss. Motivated
by these findings, a dedicated warm-up phase was introduced (see Section 5.5),
during which the classification loss weight is gradually increased from zero to
its full value over the first N epochs (configurable in the YAML file, see Ap-
pendix A.1). Figure 6.11 presents the results of this extended fine-tuning pro-
tocol on both the KIhUG and Rumex Weeds datasets. Despite the stronger
COCO baseline achieved through warm-up, the EMA-SSL initialization consis-
tently maintains lower cross-entropy loss throughout, confirming that domain-
aware self-supervised pretraining imparts lasting benefits beyond what warm-up
alone can provide.
To rigorously evaluate performance under extremely limited labels, additional
runs of 500 epochs with a 400-epoch warm-up were conducted on both KIhUG
and Rumex Weeds. As shown in Figure 6.12, both setups produce more fluctuat-
ing loss curves, yet the EMA-SSL start yields smoother validation trends and a
marginally lower final loss. These results confirm that domain-aware pretraining
provides durable advantages even when paired with extended warm-up schedules,
although the overall gain diminishes in the most extreme few-shot scenario.
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Figure 6.11: Training loss curves for fine-tuning on KIhUG (top) and Rumex
Weeds (bottom), comparing the baseline from section 6.2 (COCO-
initialized) and EMA-SSL-pretrained checkpoints under identical hy-
perparameters (including warm-up phase and total epochs). The
SSL-initialized runs maintain a lower cross-entropy loss through-
out the warm-up phase (despite both models gradually introducing
classification loss) demonstrating that the domain knowledge from
SSL pretraining persists and accelerates convergence. Extending the
warm-up period (200 epochs for Rumex Weeds because of less data
for training) partially closes the gap but does not eliminate the ad-
vantage of SSL pretraining.
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Figure 6.12: Extended 500-epoch few-shot fine-tuning (400-epoch warm-up) on
KIhUG (top) and Rumex Weeds (bottom), comparing COCO-
initialized (gray) and SSL-pretrained (green) runs under the same
aggressive augmentations and learning-rate schedule. In contrast to
the short 25-epoch comparison in Fig. 6.10, here both pipelines suffer
large training loss fluctuations, but the SSL-initialized model shows
significantly smoother validation loss curves with fewer spikes and
achieves a slightly lower final loss. This stability and the slightly
better convergence show that the self-supervised domain pretraining
provides meaningful prior knowledge that cannot simply be repli-
cated by a long warm-up with COCO weights alone, even if the
overall training loss behavior appears similar.
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Full Fine-tuning Few-shot Fine-tuning

Metric COCO SSL COCO SSL

KIhUG (Jacobaea vulgaris)

AP (50:95) 0.4537 0.4117 0.1093 0.2106

AP@50 0.7928 0.6948 0.3566 0.4108

AP@75 0.4670 0.4342 0.0268 0.2039

AP (small) 0.1265 0.0777 0.0056 0.0164

AP (medium) 0.4664 0.4034 0.1637 0.2374

AP (large) 0.5461 0.5245 0.1936 0.2640

AR@100 0.6157 0.5997 0.3252 0.4699

AR (small) 0.3987 0.3963 0.1547 0.2907

AR (medium) 0.6267 0.6070 0.3513 0.5086

AR (large) 0.6730 0.6602 0.3663 0.4981

Recall@0.50 0.9769 0.9609 0.8422 0.9151

Recall@0.70 0.7290 0.7166 0.2930 0.5448

Rumex Weeds

AP (50:95) 0.2749 0.2805 0.0786 0.1159

AP@50 0.5672 0.5742 0.2655 0.3245

AP@75 0.2356 0.2383 0.0188 0.0598

AP (small) 0.1533 0.1604 0.0339 0.0518

AP (medium) 0.4548 0.4531 0.1849 0.2093

AP (large) 0.4587 0.5732 0.2100 0.1476

AR@100 0.5118 0.5164 0.2953 0.3818

AR (small) 0.4205 0.4323 0.2339 0.3198

AR (medium) 0.6323 0.6299 0.3873 0.4774

AR (large) 0.7038 0.7044 0.3277 0.4064

Recall@0.50 0.9265 0.9300 0.8197 0.8844

Recall@0.70 0.6032 0.6140 0.2509 0.3933

Table 6.5: Quantitative comparison of COCO versus SSL checkpoints on KIhUG
and Rumex Weeds. Columns 2/3 show full fine-tuning results while
columns 4/5 show few-shot fine-tuning.
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Loss curves alone cannot fully capture detection performance. Models may op-
timize the loss without corresponding improvements in true detection metricsfor
example, by overfitting or producing many low-confidence (≈ 0.5) predictions
that never exceed threshold. To provide a definitive assessment, Table 6.5 reports
final AP and AR values for both full-data and few-shot fine-tuning on KIhUG
and RumexWeeds. By directly comparing runs initialized from our EMA-SSL
checkpoint against those starting from generic COCO weights under identical
training settings, this table quantifies the actual gains enabled by domain-aware
self-supervised pretraining and illustrates where those gains are most pronounced.
It confirms that domain-aware SSL pretraining yields clear benefits in low-data
regimes. Under few-shot conditions (100 images), the SSL-initialized runs more
than double AP50:95 on KIhUG (0.109 −→ 0.211) and achieve substantial gains
on RumexWeeds (0.079 −→ 0.116), along with marked improvements in AR@100
and Recall@0.70. Even when ample labeled data is available, the COCO base-
line can nearly match SSL performance after extended warm-up, but only the
SSL initialization consistently maintains stronger classification confidence and
stability throughout training. While these quantitative gains may not yet reach
production-grade robustness, they confirm that domain-specific self-supervised
pretraining substantially enhances detection quality under extreme data scarcity.
The qualitative examples in Figure 6.12 further underscore the practical promise
of this approach, revealing reliable plant identification, even when trained on just
100 labeled images.

Figure 6.13: Three example validation crops from the KIhUG dataset after few-
shot fine-tuning starting from the EMA-SSL checkpoint (100 images,
confidence threshold 0.3). Extensive visualizations show that de-
spite the extreme data scarcity, the detector yields few false positives
and captures a meaningful subset of plant instances, demonstrating
qualitatively strong performance that outpaces what quantitative
PyCOCO metrics alone suggest. These results indicate real-world
potential for automated removal tasks under minimal annotation
budgets, but should always be taken with a grain of salt due to pos-
sible observer bias.
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6.5 Adapter-Based Experiments
This section examines adapter modules (as introduced previously in 4.2.4) in self-
supervised and supervised stages. By training only a small subset of parameters,
adapters can cut computational overhead and annotation needs while maintaining
object detection performance. First, adapter-only EMA pretraining on reduced
unlabeled subsets is evaluated. Then, the effectiveness of these results during
downstream fine-tuning, as well as adapter finetuning itself, is assessed.

6.5.1 Adapter-Based EMA-Training
To test parameter-efficient SSL, adapters are trained with the EMA teacher-
student framework on limited portions of the unlabeled corpus. This protocol
is used to evaluate whether updating only the adapter weights enables stable
training and meaningful feature learning with 25% and 50% of the data.

Figure 6.14: Teacher-Student IoU over six epochs for three EMA-based pretrain-
ing strategies: full-model fine-tuning on the entire SSL corpus (already shown in
Fig. 6.6) and adapter-only on 50% and 25% of SSL data. All three have a con-
stant IoU value (≈0.8), which indicates stable training. The complete training
diagrams are not shown here to avoid unnecessary clutter.
Table 6.6: Recall comparison on KIhUG validation split: pseudo-boxes, full-model
SSL pretraining, and adapter-only tuning on 50% and 25% of SSL data.

Metric Pseudo Full SSL Adapter50% Adapter25%

AR@100 0.1372 0.2256 0.1398 0.1390

Recall@0.50 0.4032 0.6157 0.4332 0.4532

Recall@0.60 0.2326 0.4029 0.2517 0.2555

Recall@0.70 0.1192 0.2147 0.1085 0.0974

Adapter-only training on 50% of the data achieves over 70% of the full-model
recall, while 25% still delivers meaningful results (Table 6.6). This confirms that
updating only a small fraction of DDETR parameters can capture domain-specific
features with only a modest drop in completeness. A qualitative comparison (see
6.15) illustrates plant localization in unseen samples.
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Ground Truth

Full SSL training

Adapter 50%

Adapter 25%

Figure 6.15: Qualitative detection results on three unseen KIhUG images, using
three EMA-based SSL pretraining variants (full-model fine-tuning
and adapter-only on 50% and 25% data). Predictions are shown at
a 0.4 confidence threshold (red) and are compared with ground truth
(green). Although adapter-only tuning yields reasonable plant local-
izations, overall confidence and completeness remain highest with the
full-model SSL checkpoint.
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6.5.2 Adapter-Based Fine-Tuning
Building on the adapter-only pretraining results (Section 6.5.1), eight few-shot
fine-tuning runs are conducted to assess how different initialization and up-
date strategies affect object detection quality. Four initial checkpoints are used:
COCO-pretrained, full-model SSL (see section 6.3), and the two adapter-only
SSL variants trained on 50% and 25% of the unlabeled corpus. Each is fine-tuned
under identical hyperparameters using either full-model or adapter-only updates.
Only the KIhUG dataset is used for this already extensive comparison.
Table 6.7 summarizes the final detection metrics obtained via PyCOCO tools,
quantifying the trade-off between parameter efficiency and performance. For
clarity, the exact combinations of starting checkpoints, fine-tuning variants, and
resulting checkpoint names are listed below:

Starting Checkpoints
• coco

• ssl-full

• ssl-adpt50

• ssl-adpt25

Fine-tuning Variants
• full-ft

• adpt-ft

Final Checkpoints
• coco_full-ft

• coco_adpt-ft

• ssl-full_full-ft

• ssl-full_adpt-ft

• ssl-adpt50_full-ft

• ssl-adpt50_adpt-ft

• ssl-adpt25_full-ft

• ssl-adpt25_adpt-ft

Adapter-only fine-tuning on 100 images achieves surprisingly strong results when
starting from the SSL checkpoints (Table 6.7). Although full-model updates
yield the highest absolute AP and AR scores (like AP50:95 up to 0.2106 for ssl-
full), adapter-only runs retain over 90% of that performance while updating
only 20% of the parameters. By contrast, adapter-only fine-tuning from the
COCO baseline falls well below both SSL variants (AP50:95 = 0.0619), confirming
that domain-aware pretraining is essential for parameter-efficient adaptation in
few-shot regimes.
These results demonstrate two key insights: (1) self-supervised, domain-specific
pretraining provides a persistent boost that survives rigid downstream protocols,
and (2) adapter modules alone can suffice to transfer this knowledge, yielding
stable and competitive detectors despite freezing the bulk of the backbone. In
practice, this means that a lightweight adapter-only workflow, coupled with an
EMA-SSL checkpoint, can drastically reduce both compute and annotation costs
without sacrificing much detection quality in extreme low-data settings.
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coco ssl-full ssl-adpt50 ssl-adpt25

Metric full-ft adpt-ft full-ft adpt-ft full-ft adpt-ft full-ft adpt-ft

AP (50:95) 0.1093 0.0619 0.2106 0.1206 0.1489 0.1504 0.2035 0.1461

AP@50 0.3566 0.2234 0.4108 0.2958 0.3669 0.4249 0.4813 0.4150

AP@75 0.0268 0.0126 0.2039 0.0772 0.0944 0.0609 0.1418 0.0490

AP (small) 0.0056 0.0039 0.0164 0.0085 0.0024 0.0040 0.0148 0.0165

AP (medium) 0.1637 0.0676 0.2374 0.1547 0.1855 0.1694 0.2584 0.1476

AP (large) 0.1936 0.1127 0.2640 0.1972 0.2445 0.2146 0.2909 0.2119

AR@1 0.1770 0.1035 0.2406 0.1704 0.2104 0.1987 0.2581 0.2123

AR@10 0.3033 0.2081 0.4164 0.3298 0.2895 0.3215 0.3624 0.3346

AR@100 0.3252 0.2331 0.4699 0.3984 0.3167 0.3577 0.3741 0.3579

AR (small) 0.1547 0.1579 0.2907 0.2793 0.1481 0.1527 0.1813 0.1932

AR (medium) 0.3513 0.2394 0.5086 0.4300 0.3474 0.3619 0.4012 0.3753

AR (large) 0.3663 0.2517 0.4981 0.4125 0.3466 0.4196 0.4138 0.3925

Recall@0.5 0.8422 0.6922 0.9151 0.9034 0.7004 0.8665 0.7908 0.8580

Recall@0.6 0.6134 0.4331 0.7891 0.7169 0.5491 0.6686 0.6503 0.6657

Recall@0.7 0.2930 0.1826 0.5448 0.4242 0.3459 0.3561 0.4312 0.3720

Table 6.7: Quantitative few-shot evaluation of eight fine-tuning runs on a 100-
image split, comparing COCO and SSL pretrained initializations with
full-model vs. adapter-only updates. Metrics include AP at standard
IoU thresholds and AR for up to 100 detections. Adapter-only vari-
ants retain much of the performance of full-model fine-tuning while
updating far fewer parameters.
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The experiments presented in Chapter 6 demonstrate the practical impact of
domain-aware self-supervised pretraining and adapter-based parameter efficiency
for challenging ’green-on-green’ object detection tasks. In what follows, the
strengths and limitations of the approach are analyzed in depth, key insights
are distilled, and directions for future work are proposed. This discussion ties
together the quantitative findings, qualitative observations, and methodological
lessons learned throughout this thesis.

7.1 Analysis of Results
The experimental results demonstrate that targeted, domain-specific pretraining
via SSL with an EMA teacher-student framework can greatly reduce the need for
large annotated datasets. By comparing models initialized with COCO weights,
random weights, and our EMA-SSL checkpoint, and by evaluating both full-
model and adapter-only setups, several key advantages of the proposed approach
become evident:

• Early convergence: Fine-tuning from the EMA-SSL checkpoint converges
to lower training and validation loss more rapidly than COCO-initialized
or randomly initialized counterparts on KIhUG.

• Improved recall in low-data regimes: Under few-shot conditions (100
images), recall@0.5 and AR@100 increase substantially when starting from
EMA-SSL weights compared to COCO baselines (see Table 6.5).

• Cross-domain transferability: The same EMA-SSL pretrained model,
without any additional adaptation, achieves strong detection performance
on the Rumex Weeds dataset despite no shared training images.

• Parameter efficiency with adapters: Adapter-only training-updating
only ∼20% of the models parameters-retains over 70% of the full-model
recall, illustrating that lightweight modules can capture essential domain
features (Table 6.6).

7.2 Strengths and Limitations of the Proposed
Approach

The domain-specific SSL pipeline presented here-combining handcrafted pseudo-
labels with an EMA teacher-student framework and lightweight adapters demon-
strates a powerful proof of concept for few-shot object detection in challenging
green-on-green scenarios. By injecting task-focused signals from the very first iter-
ation, the model learns meaningful plant features and converges far more quickly
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than generic baselines. Adapter modules further enable PEFT, freezing over 80%
of the network (including the backbone) while still achieving within 90-95% of
full-fine-tuning recall (Table 6.6). This combination of targeted pseudo-labeling,
stability via EMA updates, and parameter-efficient tuning offers a compelling
route to reduce annotation burden across multiple related datasets.

Yet the road to a robust SSL detector is strewn with pitfalls. Early in develop-
ment, unchecked collapse modes like underconfidence, teacher-student drift, or
trivial box-replication-were rampant and required elaborate tuning of confidence
schedules, loss weights, and warm-up phases. Figure 7.1 illustrates a typical
failure: after only a few epochs the teacher and student converge to identical
but meaningless box patterns, halting any real learning. In practice, if only a
single dataset is needed, simply annotating a few hundred images often proves
faster and more reliable than wrestling with these dynamics. However, when
multiple related tasks or species must be supported, the upfront investment in
domain-specific SSL can pay dividends, amortizing annotation effort across many
follow-on datasets without repeating the entire labeling process.

Figure 7.1: Illustration of a collapsed SSL training run: after several epochs, both
teacher and student produce identical, trivial bounding-box predic-
tions on all inputs.
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7.3 Practical Implications for Domain-Specific
Tasks

The methods developed in this thesis demonstrate clear benefits for real-world
applications where annotation budgets and domain shifts pose significant chal-
lenges. By leveraging SSL with custom pseudo-labels and EMA-based teacher-
student updates, practitioners can bootstrap object detectors in new environ-
ments without the overhead of large hand-labeled datasets. The integration of
adapter modules further enables PEFT, keeping most of a pretrained DDETR
backbone frozen while fine-tuning only a small fraction of parameters-ideal for
rapid prototype cycles and limited compute budgets.
This pipeline is particularly attractive when:

• Annotation costs are prohibitive: Manual labeling of thousands of
images requires domain experts and specialized tools, whereas pseudo-label
generation and SSL pretraining automate much of the process.

• Domain shift degrades generic models: Off-the-shelf detectors like
COCO-trained DDETR often fail on ’green-on-green’ tasks. Domain-aware
pretraining aligns the model to subtle texture and color patterns common
in specialized datasets.

• Resource constraints demand efficiency: Freezing 80% of the net-
work and updating only adapters drastically reduces memory footprint and
training time, making real-time retraining feasible on GPU-equipped edge
devices or modest NAS-backed clusters.

• Multiple related tasks share features: Once adapters capture domain-
specific cues, they can be reused or lightly fine-tuned for related detection
tasks (like different weed species), amplifying the return on initial pretrain-
ing investment.

Potential use cases extend beyond precision agriculture and weed removal to
ecological surveys, medical imaging in niche specialties, and industrial inspection
of specialized parts. In all these scenarios, the workflow presented here provides
a scalable, reproducible path from unannotated imagery to deployable detection
models with minimal manual effort.
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7.4 Potential Improvements and Future Work
Although the presented EMA-based SSL and adapter framework demonstrates
considerable promise, several enhancements could further strengthen its applica-
bility and robustness:
This work identified multiple failure modes during self-supervised training, rang-
ing from collapse to overconfidence, and showed that careful tuning is essential.
Future research should explore:

• Improved pseudo-label generation: Develop automated or learned-
pseudo label filters, for example via ensemble agreement or uncertainty
estimation, to reduce reliance on hand-crafted image processing heuristics
and improve initial teacher quality.

• Hybrid pretraining strategies: Combine object-level SSL (as in this
thesis) with contrastive or masked-image-modeling approaches (like DINO
or MAE) that target backbone representations, yielding richer feature hi-
erarchies.

• Broader PEFT comparisons: Benchmark against emerging PEFT, such
as LoRA, prefix tuning, or distillation frameworks like lightly, to quantify
trade-offs between trainable parameter count, training speed, and detection
accuracy on the same domain data.

• Adapter architecture evolution: Compare alternative adapter designs
like compacter to study how adapter size and structure impact stability,
plasticity, and downstream performance.

• Robust out-of-domain performance: Design mechanisms (like domain-
mixup or adversarial augmentation) to maintain detection quality under
shifts in illumination, background appearance, or when applied to related
but unseen weed species.

• Scalable multi-class extension: Instead of single class pseudolabels,
assigning random provisional class IDs to generated boxes and presenting
them to the EMA teacher-student loop could refine both localization and
category predictions. Over successive epochs, the teacher model’s soft labels
should dominate, effectively bootstrapping multi-class specialization with
minimal manual intervention.

• Automated hyperparameter optimization: A more dynamic adjust-
ment of the decay of EMA, the step sizes in the curriculum or the warm-up
duration would shorten the time for manual testing and improve repro-
ducibility.

These directions aim to deepen the domain alignment of self-supervised detectors,
reduce manual overhead, and broaden the methods applicability to diverse, data-
scarce object detection tasks.

86 Mirko Lehn



7.5 Mapping Results to Research Questions

7.5 Mapping Results to Research Questions
The experiments conducted in this thesis directly address the four key research
questions posed at the end of the chapter 1. The following briefly summarizes how
the results answer each question and demonstrate the effectiveness and limitations
of the proposed domain-specific pretraining and adapter-based strategies.

RQ1: Pseudo-label-only SSL capability A pure SSL object detector trained
solely on handcrafted pseudo-boxes demonstrates a measurable ability to lo-
calize non-grass plant instances beyond its initial seeds. Qualitative compar-
isons (Fig. 6.7) and recall gains (Table 6.4) indicate that the model has cap-
tured useful domain features, even though some predictions remain imprecise.
Despite the mismatch between the self-supervised pretraining corpora and the
KIhUG and Rumex Weeds target domains, many detections still correspond
to valid plant instances.

RQ2: Impact on downstream fine-tuning Models initialized from our domain-
aware EMA-SSL checkpoint converged faster and achieved higher recall in
few-shot regimes than COCO or random starts (Figs. 6.9-6.12, Table 6.5).
This demonstrates clear benefits in both convergence speed and final detection
performance under limited labels.

RQ3: Parameter efficiency via adapters Adapter-only SSL training on 25-
50% of the unlabeled corpus retains over 70% of the recall achieved by full-
model pretraining (Table 6.6), demonstrating that updating a small subset
of parameters can suffice for domain adaptation. These experiments were
conducted starting from COCO-pretrained weights and focused on grassland
imagery; extending this approach to other domains (like medical imaging)
would remain an avenue for future investigation.

RQ4: Adapter transfer to few-shot tasks In downstream few-shot fine-tuning,
adapters pretrained during SSL delivered stable learning and respectable per-
formance, sometimes up 15% improvement compared to full-model update,
while freezing 80% of weights (Table 6.7). This confirms that adapter mod-
ules carry forward valuable domain knowledge and improve sample efficiency.

Taken together, these results validate the central thesis: a refurbished DETReg-
inspired pipeline, enhanced with domain-specific pseudo-labels and lightweight
adapters, enables effective object detection with minimal annotation effort. While
large-scale annotations still yield the best absolute performance, our approach
shines when labels are scarce or new related tasks emerge, offering a scalable
path for specialized vision applications.
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8 | Conclusion
In this work, the DETReg-like pretraining for object recognition in specialized,
data-poor domains has been revised and extended. By combining a hand-crafted
pseudo-label pipeline with an EMA teacher-learner strategy and adapter modules,
it is shown that domain-aware SSL can significantly reduce annotation require-
ments while maintaining competitive recognition performance.

8.1 Summary of Contributions
• Revival of DETReg: Identified and addressed key limitations of the

original DETReg method, namely the lack of a classification signal and bad
generic region proposals, by introducing a binary foreground/background
loss and domain-specific pseudo-labels.

• Domain-tailored pseudo-labeling: Developed a simple yet effective
classical vision pipeline (GRVI → denoise → threshold → watershed) to
seed SSL pretraining on grassland imagery, enabling object-level learning
without manual boxes.

• EMA teacherstudent framework: Integrated exponential moving aver-
age updates to refine pseudo-labels over time and stabilize training against
collapse modes. (Similar to DETReg)

• Adapter-based PEFT: Injected small adapter modules into the DDETR
backbone, freezing 80% of parameters and demonstrating that only 20%
trainable weights suffice for both pretraining and downstream few-shot fine-
tuning.

• Comprehensive evaluation: Extensive experiments on both labeled datasets
(KIhUG and RumexWeeds) have shown that domain-specific SSL pretrain-
ing accelerates convergence, increases recognition rate on small datasets,
and outperforms COCO-based baselines under few-shot conditions.

• Practical training insights: Introduced a gradual warm-up of classifi-
cation loss to prevent underconfidence and further demonstrated that even
this simple strategy can match or exceed SSL gains when abundant labels
are available.
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8.2 Key Findings
• Annotation savings: In few-shot scenarios (100 images), SSL-initialized

models achieved up to a ×2 recall improvement over COCO baselines (Re-
call@0.5 on KIhUG: 0.92 vs. 0.84).

• Adapter efficacy: Adapter-only pretraining on 50% of unlabeled data
recovers over 70% of full-model recall, while freezing the backbone entirely.

• Training stability: The EMA + adapter combination mitigates common
collapse modes, yet required extensive tuning. One example (see Fig. 7.1)
visualizes the challenges of noisy supervision in SSL.

• Domain shift resilience: The same SSL checkpoint transfers effectively
between KIhUG and RumexWeeds, despite no shared imagery.

• Diminishing returns: When large labeled datasets are available, simple
warm-up strategies close the performance gap, indicating that SSL pre-
training shines primarily under label scarcity.

8.3 Final Remarks
The work shows that an ’improved’ DETReg approach (extended with domain-
specific pseudo-labels, EMA updates, and parameter-efficient adapters) offers a
viable way to reduce annotation overhead in specialized vision tasks. While the
method requires careful tuning and cannot replace extensive supervised training
when there are many labels, it opens up promising possibilities for applications
where labeled data is expensive, expert-derived, or rapidly evolving. Future re-
search integrating contrastive backbone pre-training, ensemble pseudo-labeling
or distillation techniques could further strengthen these foundations and extend
their impact in practice.
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A | Appendices
A.1 Full Example - Configuration File

01 # === Paths and Directories ===
02 BASE_DIR: "/home/mlhn64/ssl_ddetr_mlhn64"
03 ROOT_DIR: "/datasets"
04 KIHUG_DIR: "/datasets/kihug_raw_dataset/detect"
05 RUMEX_DIR: "/datasets/RumexWeeds"
06
07 # EMA Training Files
08 EMA_YAML: "dataset_configs/ssl_data_25.yaml"
09 EVAL_YAML: "../../ datasets/kihug_raw_dataset/detect/dataset_split.yaml"
10 EMA_CHECKPOINT_START: "checkpoints/no.pth"
11 EMA_CHECKPOINT_OUTPUT: "checkpoints/ssl_pretrain_adapter_25.pth"
12 EMA_LOG_FILE: "logs/ssl_pretrain_adapter_25.json"
13
14 # Fine -tuning Files
15 TRAIN_RUMEX: false
16 FINETUNE_TRAIN_YAML: "../../ datasets/kihug_raw_dataset/detect/

↪→ dataset_split_fewshot_100.yaml"
17 FINETUNE_CHECKPOINT_START: "checkpoints/no_ssl_pretrain.pth"
18 FINETUNE_CHECKPOINT_OUTPUT: "checkpoints/coco_adapt -ft.pth"
19 FINETUNE_LOG_FILE: "logs/coco_adapt -ft.json"
20
21 # === EMA Specific ===
22 EMA_BATCH_SIZE: 14
23 EMA_WEIGHT_DECAY: 0.0001
24 EMA_EPOCHS: 6
25 EMA_LEARNING_RATE: 0.0001
26 SCHEDULAR_GAMMA: 0.95
27 EMA_DECAY: 0.995
28 TEACHER_RATIO_START: 0.5
29 PSEUDO_RATIO_START: 0.5
30 CURRICULUM_STEP: 0.1
31 TEACHER_TEMPERATURE: 1.1
32 STUDENT_TEMPERATURE: 0.9
33 ORTHO_ALIGNER_WEIGHT: 2.0
34 ORTHO_ADAPTER_WEIGHT: 0.2
35 JITTER_RATIO: 0.1
36 DROPOUT_PROB: 0.25
37 FREEZE_MODEL: true # adapter only
38 WARMUP_MODEL: false # freeze backbone only ...
39 WARMUP_STEPS: 1000 # ... for N epochs
40
41 # === Fine -tuning Specific ===
42 FINETUNE_BATCH_SIZE: 4 # 16 (full) / 4 (few shot learning)
43 FINETUNE_WEIGHT_DECAY: 0.0001
44 FINETUNE_EPOCHS: 500
45 FINETUNE_LEARNING_RATE: 0.0001
46 FINETUNING_SCHEDULAR_GAMMA: 0.99
47 FINETUNING_FREEZE_MODEL: true # adapter only
48 FINETUNING_WARMUP_EPOCHS: 400 # introduce CE loss slowly over N epochs
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A.2 SLURM Job Scripts

Listing A.2: SLURM Job File for SSL Pretraining with EMA

01 #!/bin/bash
02 #SBATCH --job -name=ema_ddetr
03 #SBATCH --output =% j_ema.out # Combined output and error log
04 #SBATCH --time =42:00:00
05 #SBATCH --mem =32G
06 #SBATCH --ntasks =1
07 #SBATCH --cpus -per -task=4
08 #SBATCH --gres=gpu:1
09
10 # SLURM container settings
11 #SBATCH --container -image=’/home/mlhn64/image.sqfs’
12 #SBATCH --container -mounts=’/datasets ,/ datasets/clover_unlabeled ,/

↪→ datasets/RumexWeeds ,/ datasets/clover_synthethic_Images ,/ datasets
↪→ /20240826 _Drohnenaufnahmen_Rennerod ,/ datasets /3D-Sim -v1’

13 #SBATCH --container -workdir=’/home/mlhn64/’
14 #SBATCH --no -container -remap -root
15 #SBATCH --container -mount -home
16
17 export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
18
19 # Run the self -supervised training script
20 python ssl_ddetr_mlhn64/ema_ddetr.py

Listing A.3: SLURM Job File for Supervised Fine-Tuning

01 #!/bin/bash
02 #SBATCH --job -name=finetune_ddetr
03 #SBATCH --output =% j_finetune.out # Combined output and error log
04 #SBATCH --time =42:00:00
05 #SBATCH --mem =32G
06 #SBATCH --ntasks =1
07 #SBATCH --cpus -per -task=4
08 #SBATCH --gres=gpu:1 # Request a GPU if needed
09
10 # SLURM container settings
11 #SBATCH --container -image=’/home/mlhn64/image.sqfs’ # Use your saved

↪→ image
12 #SBATCH --container -mounts=’/datasets ,/ datasets/RumexWeeds /20210806

↪→ _hegnstrup ,/ datasets/RumexWeeds /20210806 _stengard ,/ datasets/
↪→ RumexWeeds /20210807 _lundholm ,/ datasets/RumexWeeds /20210908 _lundholm
↪→ ,/ datasets/RumexWeeds /20211006 _stengard ’

13 #SBATCH --container -workdir=’/home/mlhn64/’ # Set working
↪→ directory inside the container

14 #SBATCH --no -container -remap -root # Ensure root
↪→ permissions inside container

15 #SBATCH --container -mount -home # Mount home
↪→ directory inside the container

16
17 # Run the test script inside the container
18 python ssl_ddetr_mlhn64/finetune_ddetr.py
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A.3 Pseudo-Label Generation: Core Logic

Listing A.4: Key Snippet from the Pseudo-Label Extraction Pipeline

01 # Pseudo Label Extraction Using GRVI and Classical CV Techniques
02 def extract_pseudo_boxes(image):
03 boxes = []
04 image = image.astype(np.float32)
05 h, w = image.shape [:2]
06
07 # Compute GRVI: (G - R) / (G + R)
08 R, G, _ = image[:, :, 2], image[:, :, 1], image[:, :, 0]
09 brightness = (R + G + image[:, :, 0]) / 3
10 grvi = np.zeros_like(G, dtype=np.float32)
11 mask = brightness > 50 # Avoid division noise in dark areas
12 grvi[mask] = (G[mask] - R[mask]) / (R[mask] + G[mask] + 1e-6)
13 grvi = (grvi + 1) / 2 # Normalize to [0, 1]
14
15 # Apply denoising , thresholding , and watershed
16 A_tv = denoise_tv_chambolle(grvi , weight =0.7)
17 A_uint8 = cv2.normalize(A_tv , None , 0, 255, cv2.NORM_MINMAX).astype(

↪→ np.uint8)
18 _, binary = cv2.threshold(A_uint8 , 0, 255, cv2.THRESH_BINARY + cv2.

↪→ THRESH_OTSU)
19
20 morph = cv2.erode(binary , None , iterations =3)
21 morph = cv2.dilate(morph , None , iterations =3)
22
23 dist = cv2.distanceTransform(morph , cv2.DIST_L2 , 5)
24 dist[dist < 0.1 * dist.max()] = 0
25 local_max = local_maxima(dist)
26 markers , _ = ndi.label(local_max)
27 label_map = watershed(-dist , markers , mask=morph)
28
29 # Convert segments to normalized bounding boxes
30 for sl in find_objects(label_map):
31 if sl:
32 y_min , y_max = sl[0]. start , sl[0]. stop
33 x_min , x_max = sl[1]. start , sl[1]. stop
34 cx , cy = (( x_min + x_max) / 2) / w, (( y_min + y_max) / 2) / h
35 bw , bh = (x_max - x_min) / w, (y_max - y_min) / h
36 boxes.append ((cx , cy , bw , bh))
37
38 return boxes

A.4 Full Code and Resources
The implementation and related resources for this thesis are available in the
GitLab repository hosted by Technische Hochschule Mittelhessen. Please note
that access may require institutional permissions.

https://git.thm.de/institut-f-r-technik-und-informatik/projects/
kihug/ssl_ddetr_mlhn64
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